

ZED-F9T

u-blox F9 high accuracy timing module

Data sheet

Abstract

This data sheet describes the ZED-F9T timing module with multi-band GNSS receiver and nanosecond-level timing accuracy. It meets the most stringent 5G timing requirements, is ideal for global deployments due to GPS, BeiDou, Galileo, and GLONASS reception, and is unaffected by ionospheric errors. The module provides differential timing mode for highly accurate local timing and built-in security for highest robustness against malicious attacks.

www.u-blox.com

UBX-18053713 - R05

Document information

Title	ZED-F9T	
Subtitle	u-blox F9 high accuracy timing module	
Document type	Data sheet	
Document number	UBX-18053713	
Revision and date	R05	20-Feb-2020
Document status	Early production information	

Product status	Corresponding content statu	IS
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	Firmware version	PCN reference
ZED-F9T	ZED-F9T-00B-01	TIM 2.01	UBX-19057484

u-blox reserves all rights to this document and the information contained herein. Products, names, logos and designs described herein may in whole or in part be subject to intellectual property rights. Reproduction, use, modification or disclosure to third parties of this document or any part thereof without the express permission of u-blox is strictly prohibited.

The information contained herein is provided "as is" and u-blox assumes no liability for the use of the information. No warranty, either express or implied, is given with respect to, including but not limited to, the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time. For most recent documents, please visit www.u blox.com.

Copyright © 2020, u-blox AG.

u-blox is a registered trademark of u-blox Holding AG in the EU and other countries.

Contents

1 Functional description	4
1.1 Overview	4
1.2 Performance	
1.3 Supported GNSS constellations	
1.4 Supported GNSS augmentation systems	
1.4.1 Quasi-zenith satellite system (QZSS)	
1.4.2 Satellite based augmentation system (SBAS)	
1.4.3 Differential timing mode	
1.5 Broadcast navigation data and satellite signal measurements	
1.5.1 Carrier-phase measurements	
1.6 Supported protocols	
2 System description	8
2.1 Block diagram	8
3 Pin definition	a
3.1 Pin assignment	
5	
4 Electrical specification12	
4.1 Absolute maximum ratings1	
4.2 Operating conditions	
4.3 Indicative power requirements1	3
5 Communications interfaces14	4
5.1 UART interface14	4
5.2 SPI interface14	4
5.3 Slave I2C interface1	
5.4 USB interface1	
5.5 Default interface settings1	7
6 Mechanical specification	B
7 Reliability tests and approvals	q
7.1 Approvals	
8 Labeling and ordering information	
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	
Related documents2	1
Revision history	2

1 Functional description

1.1 Overview

The ZED-F9T is a multi-band GNSS module offering 5 ns (1-sigma) timing accuracy with unparalleled low power consumption.

The ZED-F9T incorporates the u-blox F9 multi-band platform in a small surface mount device with a form factor of 22 x 17 mm.

1.2 Performance

Parameter	Specification			
Receiver type	Multi-band GNSS receiver for timing applications			
Accuracy of time pulse signal ¹	Absolute timing mode	5 ns		
	Differential timing mode ²	2.5 ns		
Frequency of time pulse signal		0.25 Hz to 25 MHz (configurable)		
Time pulse jitter		±4 ns		
Time-mark resolution		8 ns		
Operational limits ³	Dynamics	≤ 4 g		
	Altitude	50,000 m		
	Velocity	500 m/s		
Velocity accuracy ⁴		0.05 m/s		
Dynamic heading accuracy ⁴		0.3 deg		
_ ,				

GNSS		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Acquisition ⁵	Cold start	24 s	25 s	29 s	26 s	28 s	29 s
·	Hot start	2 s	2 s	2 s	2 s	2 s	2 s
	Aided start ⁶	2 s	2 s	2 s	2 s	2 s	2 s
Nav. update rate ⁷		8 Hz	10 Hz	15 Hz	15 Hz	15 Hz	20 Hz

Table 1: ZED-F9T performance in different GNSS modes

GNSS		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Horizontal pos. accuracy	Standalone ⁸	2.0 m CEP	2.0 m CEP	2.0 m CEP	2.0 m CEP	2.0 m CEP	2.0 m CEP

Table 2: ZED-F9T position accuracy in different GNSS modes

¹ 1-sigma, fixed position mode, depends on temperature, atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and geometry

² Demonstrated with 20 km baseline

³ Assuming Airborne 4 g platform

⁴ 50% @ 30 m/s for dynamic operation

⁵ Commanded starts. All satellites at -130 dBm.

⁶ Dependent on the speed and latency of the aiding data connection, commanded starts

⁷ In PVT navigation mode

⁸ Depends on atmospheric conditions, GNSS antenna, multipath conditions, satellite visibility, and geometry

In order to achieve the maximum timing accuracy, it is recommended to measure the propagation delay of the entire signal path from the antenna to the receiver's time pulse output, and then compensate for this delay using CFG-TP configuration items.

GNSS		GPS+GLO+GAL+BDS	
Sensitivity ⁹	Tracking and nav.	-167 dBm	
-	Reacquisition	-160 dBm	
	Cold start	-148 dBm	
	Hot start	-157 dBm	

Table 3: ZED-F9T sensitivity

1.3 Supported GNSS constellations

The ZED-F9T GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS systems. Owing to the multi-band RF front-end architecture, all four major GNSS constellations (GPS, Galileo, GLONASS and BeiDou) can be received concurrently. If power consumption is a key factor, then the receiver can be configured for a sub-set of GNSS constellations.

The QZSS system shares the same L1 and L2 frequency bands as GPS and can only be processed in conjunction with GPS.

To take advantage of multi-band signal reception, dedicated hardware preparation must be made during the design-in phase. See the ZED-F9T Integration manual [1] for u-blox design recommendations.

The ZED-F9T supports the GNSS and their signals as shown in Table 4.

GPS	GLONASS	Galileo	BeiDou
L1C/A (1575.42 MHz)	L1OF (1602 MHz + k*562.5 kHz, k = –7,, 5, 6)	E1-B/C (1575.42 MHz)	B1I (1561.098 MHz)
L2C (1227.60 MHz)	L2OF (1246 MHz + k*437.5 kHz, k = –7,, 5, 6)	E5b (1207.140 MHz)	B2I (1207.140 MHz)

Table 4: Supported GNSS and signals on ZED-F9T

The following GNSS assistance services can be activated on ZED-F9T:

AssistNow [™] Online	AssistNow [™] Offline	AssistNow™ Autonomous
Supported	-	-

Table 5: Supported Assisted GNSS (A-GNSS) services

1.4 Supported GNSS augmentation systems

1.4.1 Quasi-zenith satellite system (QZSS)

The Quasi-zenith satellite system (QZSS) is a regional navigation satellite system that transmits additional L1 C/A and L2C signals for the Pacific region covering Japan and Australia. The ZED-F9T timing module is able to receive and track these signals concurrently with GPS L1 C/A and L2C signals, resulting in better availability especially under challenging signal conditions, e.g. in urban canyons.

⁹ Demonstrated with a good external LNA

QZSS can be enabled only if GPS operation is also configured.

1.4.2 Satellite based augmentation system (SBAS)

The ZED-F9T timing module optionally support SBAS (including WAAS in the US, EGNOS in Europe, MSAS in Japan and GAGAN in India) to deliver improved location accuracy within the regions covered. However, the additional inter-standard time calibration step used during SBAS reception results in degraded time accuracy overall.

SBAS reception is disabled by default in ZED-F9T.

1.4.3 Differential timing mode

To improve timing accuracy locally, the ZED-F9T can be used in differential timing mode, in which correction data is exchanged with other neighboring ZED-F9T timing receivers via a communication network.

In differential timing mode ZED-F9T can operate either as a master reference station generating the following RTCM 3.3 output messages, or as a slave station receiving the following RTCM 3.3 input messages:

Message Type	Description	
RTCM 1005	Stationary RTK reference station ARP	
RTCM 1077	GPS MSM7	
RTCM 1087	GLONASS MSM7	
RTCM 1097	Galileo MSM7	
RTCM 1127	BeiDou MSM7	
RTCM 1230	GLONASS code-phase biases	
RTCM 4072	Additional reference station information	

Table 6: Supported RTCM 3.3 messages

1.5 Broadcast navigation data and satellite signal measurements

The ZED-F9T can output all the GNSS broadcast data upon reception from tracked satellites. This includes all the supported GNSS signals plus the augmentation services QZSS and SBAS. The UBX-RXM-SFRBX message is used for this information. The receiver also makes available the tracked satellite signal information, i.e. raw code phase and Doppler measurements, in a form aligned to the Radio Resource LCS Protocol (RRLP) [3]. For the UBX-RXM-SFRBX message specification, see the u-blox ZED-F9T Interface description [2].

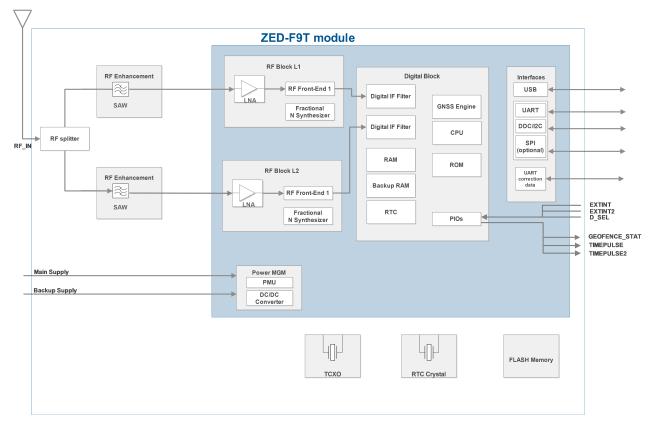
1.5.1 Carrier-phase measurements

The ZED-F9T modules provide raw carrier phase data for all supported signals, along with pseudorange, Doppler and measurement quality information. The data contained in the UBX-RXM-RAWX message follows the conventions of a multi-GNSS RINEX 3 observation file. For the UBX-RXM-RAWX message specification, see the u-blox ZED-F9T Interface description [2].

Raw measurement data are available once the receiver has established data bit synchronization and time-of-week.

1.6 Supported protocols

The ZED-F9T supports the following protocols:


Protocol	Туре	
UBX	Input/output, binary, u-blox proprietary	
NMEA 4.10	Input/output, ASCII	
RTCM 3.3	Input/output, binary	

For specification of the protocols, see the u-blox ZED-F9T Interface description [2].

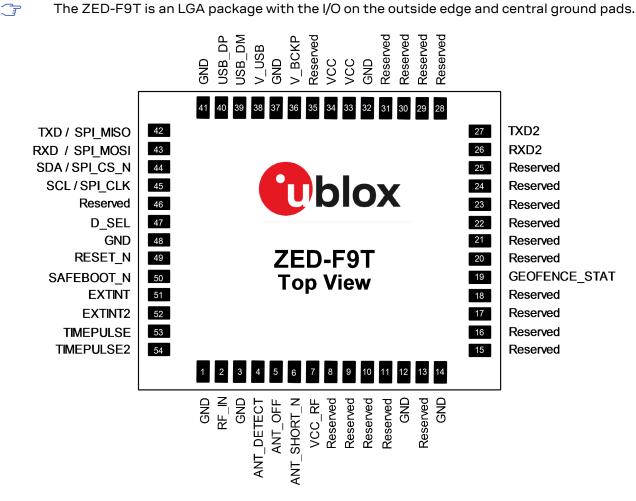
2 System description

2.1 Block diagram

Figure 1: ZED-F9T block diagram

Ţ

An active antenna is mandatory with the ZED-F9T. See the ZED-F9T Integration manual [1.]


3 Pin definition

3.1 Pin assignment

The pin assignment of the ZED-F9T module is shown in Figure 2. The defined configuration of the PIOs is listed in Table 8.

For detailed information on pin functions and characteristics, see the u-blox ZED-F9T Integration manual [1].

The ZED-F9T is an LGA package with the I/O on the outside edge and central ground pads.

Figure 2: ZED-F9T	T pin assignment
-------------------	------------------

Pin No	Name	I/O	Description
1	GND	-	Ground
2	RF_IN	I	RF input
3	GND	-	Ground
4	ANT_DETECT	I	Active antenna detect - default active high
5	ANT_OFF	0	External LNA disable - default active high
6	ANT_SHORT_N	I	Active antenna short detect - default active low
7	VCC_RF	0	Voltage for external LNA

Pin No	Name	I/O	Description
8	Reserved	_	Reserved
9	Reserved	_	Reserved
10	Reserved	-	Reserved
11	Reserved	-	Reserved
12	GND	-	Ground
13	Reserved	-	Reserved
14	GND	-	Ground
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	GEOFENCE_STAT	0	Geofence status, user defined
20	Reserved	-	Reserved
21	Reserved	-	Reserved
22	Reserved	-	Reserved
23	Reserved	-	Reserved
24	Reserved	_	Reserved
25	Reserved	_	Reserved
26	RXD2	I	Correction UART input
27	TXD2	0	Correction UART output
28	Reserved	-	Reserved
29	Reserved	-	Reserved
30	Reserved	-	Reserved
31	Reserved	-	Reserved
32	GND	-	Ground
33	VCC	I	Voltage supply
34	VCC	I	Voltage supply
35	Reserved	-	Reserved
36	V_BCKP	I	Backup supply voltage
37	GND	_	Ground
38	V_USB	I	USB supply
39	USB_DM	I/O	USB data
40	USB_DP	I/O	USB data
41	GND	-	Ground
42	TXD/SPI_MISO	0	Host UART output if D_SEL = 1(or open). SPI_MISO if D_SEL = 0
43	RXD/SPI_MOSI	I	Host UART input if D_SEL = 1(or open). SPI_MOSI if D_SEL = 0
44	SDA/SPI_CS_N	I/O	I2C Data if D_SEL = 1 (or open). SPI Chip Select if D_SEL = 0
45	SCL/SPI_CLK	I/O	I2C Clock if D_SEL = 1(or open). SPI Clock if D_SEL = 0
46	Reserved	-	Reserved
47	D_SEL	I	Interface select for pins 42-45
48	GND	-	Ground
49	RESET_N	I	RESET_N
50	SAFEBOOT_N	I	SAFEBOOT_N (for future service, updates and reconfiguration, leave OPEN)
51	EXTINT	I	External Interrupt Pin

Pin No	Name	I/O	Description
52	EXTINT2	I	External Interrupt Pin 2
53	TIMEPULSE	0	Time pulse
54	TIMEPULSE2	0	Time pulse 2
Table 8: 2	ZED-F9T pin assignı	ment	

UBX-18053713 - R05 Early production information

7

4 Electrical specification

The limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only. Operation of the device at these or at any other conditions above those given below is not implied. Exposure to limiting values for extended periods may affect device reliability.

Where application information is given, it is advisory only and does not form part of the specification.

4.1 Absolute maximum ratings

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Backup battery voltage	V_BCKP		-0.5	3.6	V
Input pin voltage	Vin	VCC ≤ 3.1 V	-0.5	VCC + 0.5	V
		VCC > 3.1 V	-0.5	3.6	V
VCC_RF output current	ICC_RF			100	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DN, USB_DP		-0.5	V_USB + 0.5	5 V
Input power at RF_IN	Prfin	source impedance = 50 Ω, continuous wave		10	dBm
Storage temperature	Tstg		-40	+85	°C

Table 9: Absolute maximum ratings

 \triangle

िन

The product is not protected against overvoltage or reversed voltages. Voltage spikes exceeding the power supply voltage specification, given in the table above, must be limited to values within the specified boundaries by using appropriate protection diodes.

4.2 Operating conditions

All specifications are at an ambient temperature of 25 °C. Extreme operating temperatures can significantly impact the specification values. Applications operating near the temperature limits should be tested to ensure the specification.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
Backup battery voltage	V_BCKP	1.65		3.6	V	
Backup battery current	I_BCKP		36		μA	
SW backup current	I_SWBCKP		0.33		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	
Digital IO pin low level output voltage	Vol			0.4	V	lol = 2 mA
Digital IO pin high level output voltage	Voh	VCC-0.4			V	loh = 2 mA
DC current through any digital I/O pin (except supplies)	lpin			5	mA	
VCC_RF voltage	VCC_RF		VCC - 0.1		V	
VCC_RF output current	ICC_RF			50	mA	

Parameter	Symbol	Min	Typical	Max	Units	Condition
Receiver chain noise figure ¹⁰	NFtot		9.5		dB	·
External gain (at RF_IN)	Ext_gain	17		50	dB	
Operating temperature	Topr	-40	+25	85	°C	

Table 10: Operating conditions

T

T

Operation beyond the specified operating conditions can affect device reliability.

4.3 Indicative power requirements

Table 11 lists examples of the total system supply current including RF and baseband section for a possible application.

Values in Table 11 are provided for customer information only, as an example of typical current requirements. Values are characterized on samples with using a command cold start. Actual power requirements can vary depending on FW version used, external circuitry, number of SVs tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	GPS+GLO +GAL+BDS	GPS	Unit
I _{PEAK}	Peak current	Acquisition	130	120	mA
I _{VCC} ¹¹	VCC current	Acquisition	90	75	mA
Isupply	Supply current	Tracking	85	68	mA

Table 11: Currents to calculate the indicative power requirements

All values in Table 11 are measured at 25 °C ambient temperature.

 $^{^{10}\;}$ Only valid for the GPS

¹¹ Simulated GNSS signal

5 Communications interfaces

There are several communications interfaces including UART, SPI, I2C¹² and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART interface

There are two UART interfaces: UART1 and UART2. UART1 and UART2 operate up to and including a speed of 921600 baud. No hardware flow control on UART1 and UART2 is supported.

UART1 is enabled by default if D_SEL = 1 or unconnected.

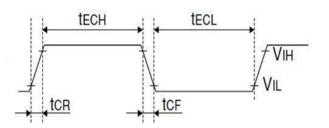
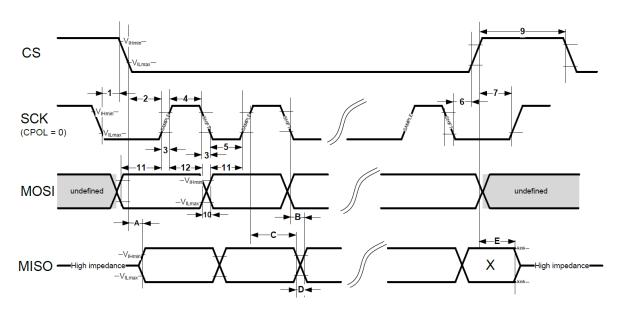


Figure 3: ZED-F9T timing module UART timing specifications

Symbol	Parameter	Min	Max	Unit
t _{ECH}	High period of external data input	0	0.4	μs
t _{ECL}	Low period of external data input	ТВА	ТВА	μs
R _u	Baud rate	9600	921600	bd
t _{CR}	Rise time of data		5	ns
t _{CF}	Fall time of data		5	ns

Table 12: ZED-F9T UART timings and specifications

5.2 SPI interface


The ZED-F9T has an SPI slave interface that can be selected by setting D_SEL = 0. The SPI slave interface is shared with UART1. The SPI pins available are: SPI_MISO (TXD), SPI_MOSI (RXD), SPI_CS_N, SPI_CLK. The SPI interface is designed to allow communication to a host CPU. The interface can be operated in slave mode only. Note that SPI is not available in the default configuration because its pins are shared with the UART and I2C interfaces. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

This section provides SPI timing values for the ZED-F9T slave operation. The following tables present timing values under different capacitive loading conditions. Default SPI configuration is CPOL = 0 and CPHA = 0.

¹² I2C is a registered trademark of Philips/NXP

ी

Figure 4: ZED-F9T timing module SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

Timings 1 - 12 are not specified here as those are depending on SPI master. Timings A - E are specified for SPI slave.

Timing value at 2 pF load	Min (ns)	Max (ns)
"A" - MISO data valid time (CS)	14	38
"B" - MISO data valid time (SCK) weak driver mode	21	38
"C" - MISO data hold time	114	130
"D" - MISO rise/fall time, weak driver mode	1	4
"E" - MISO data disable lag time	20	32

Timing value at 20 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	19	52	
"B" - MISO data valid time (SCK) weak driver mode	25	51	
"C" - MISO data hold time	117	137	
"D" - MISO rise/fall time, weak driver mode	6	16	
"E" - MISO data disable lag time	20	32	

Table 14: ZED-F9T SPI timings at 20pF load

Timing value at 60 pF load	Min (ns)	Max (ns)	
"A" - MISO data valid time (CS)	29	79	
"B" - MISO data valid time (SCK) weak driver mode	35	78	
"C" - MISO data hold time	122	152	
"D" - MISO rise/fall time, weak driver mode	15	41	
"E" - MISO data disable lag time	20	32	

Table 15: ZED-F9T SPI timings at 60pF load

5.3 Slave I2C interface

An I2C compliant interface is available for communication with an external host CPU. The interface can be operated in slave mode only. It is fully compatible with Fast-Mode of the I2C industry

standard. Since the maximum SCL clock frequency is 400 kHz, the maximum bit rate is 400 kbit/ s. The interface stretches the clock when slowed down while serving interrupts, therefore the real bit rates may be slightly lower.

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

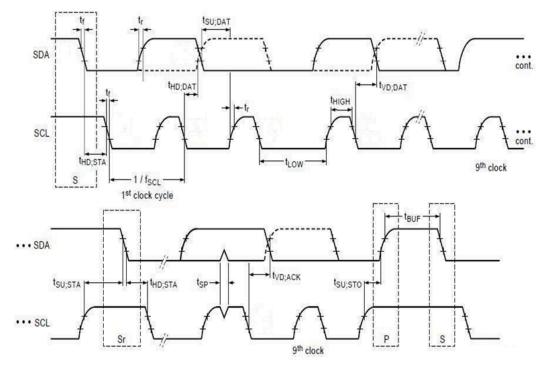


Figure 5: ZED-F9T timing module I2C slave specification

Symbol	Parameter	Min (Standard / Fast-mode)	Мах	Unit
f _{SCL}	SCL clock frequency	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition	4.0/1	-	μs
t _{LOW}	Low period of the SCL clock	5/2	-	μs
t _{HIGH}	High period of the SCL clock	4.0/1	-	μs
t _{SU;STA}	Set-up time for a repeated START condition	5/1	-	μs
t _{HD;DAT}	Data hold time	0/0	-	μs
t _{SU;DAT}	Data set-up time	250/100		ns
t _r	Rise time of both SDA and SCL signals	-	1000/300 (for C = 400pF)	ns
t _f	Fall time of both SDA and SCL signals	-	300/300 (for C = 400pF)	ns
t _{su;sto}	Set-up time for STOP condition	4.0/1	-	μs
t _{BUF}	Bus free time between a STOP and START condition	5/2	-	μs
t _{VD;DAT}	Data valid time	-	4/1	μs
t _{VD;ACK}	Data valid acknowledge time	-	4/1	μs
V _{nL}	Noise margin at the low level	0.1 VCC	-	V
V _{nH}	Noise margin at the high level	0.2 VCC	-	V

Table 16: ZED-F9T I2C slave timings and specifications

5.4 USB interface

A USB interface, which is compatible to USB version 2.0 FS (Full Speed, 12 Mbit/s), can be used for communication to a host. The V_USB pin supplies the USB interface.

5.5 Default interface settings

Interface	Settings
UART1 output	38400 baud, 8 bits, no parity bit, 1 stop bit. NMEA GGA, GLL, GSA, GSV, RMC, VTG, TXT (and no UBX) messages are output by default.
UART1 input	38400 baud, 8 bits, no parity bit, 1 stop bit. UBX, NMEA and RTCM 3.3 messages are enabled by default.
UART2 output	38400 baud, 8 bits, no parity bit, 1 stop bit. No host interface (UBX). Configured by default to allow RTCM 3.3 as an output protocol. NMEA can also be configured as an output protocol.
UART2 input	38400 baud, 8 bits, no parity bit, 1 stop bit. No host interface support (UBX). RTCM 3.3 protocol enabled by default.
USB output	NMEA GGA, GLL, GSA, GSV, RMC, VTG, TXT (and no UBX) messages are output by default.
USB input	UBX, NMEA, RTCM 3.3 protocols enabled by default.
12C	Fully compatible with the I2C ¹³ industry standard, available for communication with an external host CPU or u-blox cellular modules, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. Maximum bit rate 400 kb/s.
SPI	Allow communication to a host CPU, operated in slave mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. SPI is not available unless D_SEL pin is set to low (see section D_SEL interface in ZED-F9T Integration manual [1]).

Table 17: Default interface settings

Ţ

Refer to the u-blox ZED-F9T Interface description [2] for information about further settings.

By default the ZED-F9T outputs NMEA 4.10 messages that include satellite data for all GNSS bands being received. This results in a high NMEA load output for each navigation period. Make sure the UART1 baud rate being used is sufficient for the selected navigation rate and the number of GNSS signals being received.

¹³ I2C is a registered trademark of Philips/NXP

6 Mechanical specification

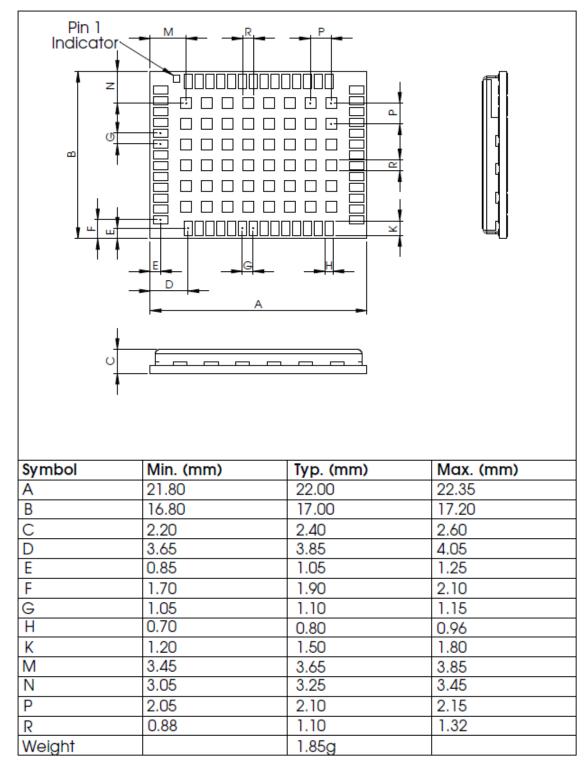


Figure 6: ZED-F9T mechanical drawing

7 Reliability tests and approvals

ZED-F9T modules are based on AEC-Q100 qualified GNSS chips.

Tests for product family qualifications are according to ISO 16750 "Road vehicles – environmental conditions and testing for electrical and electronic equipment", and appropriate standards.

7.1 Approvals

The ZED-F9T is designed to in compliance with the essential requirements and other relevant provisions of Radio Equipment Directive (RED) 2014/53/EU.

The ZED-F9T complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

Declaration of Conformity (DoC) is available on the u-blox website.

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about product handling and soldering see the ZED-F9T Integration manual [1].

8.1 Product labeling

The labeling of the ZED-F9T modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three different product code formats are used. The **Product name** is used in documentation such as this data sheet and identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions. Table 18 below details these three different formats.

Format	Structure	Code for this product	
Product name	PPP-TGV	ZED-F9T	
Ordering code	PPP-TGV-NNQ	ZED-F9T-00B	
Type number	PPP-TGV-NNQ-XX	ZED-F9T-00B-01	

Table 18: Product code formats

The parts of the product code are explained in Table 19.

Code	Meaning	Example	
PPP	Product family	ZED	
TG	Platform	F9 = u-blox F9	
V	Variant	T = Timing	
NNQ	Option / Quality grade	NN: Option [0099]	
		Q: Grade, A = Automotive, B = Professional	
XX	Product detail	Describes hardware and firmware versions	

Table 19: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark	
ZED-F9T-00B	u-blox ZED-F9T		

Table 20: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/ product-resources.

Related documents

- [1] ZED-F9T Integration manual, doc. no. UBX-19005590
- [2] ZED-F9T Interface description, doc. no. UBX-18053584
- [3] Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11)
- For regular updates to u-blox documentation and to receive product change notifications please register on our homepage (http://www.u-blox.com).

Revision history

Revision	Date	Name	Status / comments
R01	10-Dec-2018	tkoi	Objective specification
R02	11-Mar-2019	tkoi	Advance information
R03	05-Jun-2019	tkoi	Early production information
R04	16-Jan-2020	byou	Early production information Updated type number
R05	20-Feb-2020	jhak	Absolute maximum ratings and Operating conditions tables updated.

Contact

For complete contact information visit us at www.u-blox.com.

u-blox Offices

North, Central and South America

u-blox America, Inc. Phone: +1 703 483 3180 Phone:

r none.	117034033100
E-mail:	info_us@u-blox.com

Regional Office West Coast

+1 408 573 3640 Phone: info_us@u-blox.com E-mail:

Technical Support

Phone:	+1 703 483 3185
E-mail:	support_us@u-blox.com

Headquarters

Europe, Middle East, Africa

u-blox AG	
Phone:	+41 44 722 74 44
E-mail:	info@u-blox.com
Support:	support@u-blox.com

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.		
Phone:	+65 6734 3811	
E-mail:	info_ap@u-blox.com	
Support:	support_ap@u-blox.com	
Regional Office Australia		

Regional C	Australia
Phone:	+61 2 8448 2016
E-mail:	info_anz@u-blox.com
Support:	support_ap@u-blox.com

Regional Office China (Beijing)		
Phone:	+86 10 68 133 545	
E-mail:	info_cn@u-blox.com	
Support:	support_cn@u-blox.com	

Regional Office China (Chongqing)	
Phone:	+86 23 6815 1588
E-mail:	info_cn@u-blox.com
Support:	support_cn@u-blox.com

Regional	Office China (Shanghai)
Phone:	+86 21 6090 4832

Phone:	+86 21 6090 4832
E-mail:	info_cn@u-blox.com
Support:	support_cn@u-blox.com

Regional Office China (Shenzhen)	
Phone:	+86 755 8627 1083

Phone:	+8675586271083
E-mail:	info_cn@u-blox.com
Support:	support_cn@u-blox.com

Regional Office India

Phone: +91 80 4050 9200 E-mail: info_in@u-blox.com Support: support_in@u-blox.com

Regional Office Japan (Osaka)

+81 6 6941 3660 Phone: E-mail: info_jp@u-blox.com Support: support_jp@u-blox.com

Regional Office Japan (Tokyo)Phone:+81 3 5775 3850E-mail:info_jp@u-blox.com Suppo

I.	IIIIo_jp@u-biox.com	
ort:	support_jp@u-blox.cor	n
	61	

Regional O	Office Korea
Phone:	+82 2 542 08

negional office Rolea	
Phone:	+82 2 542 0861
E-mail:	info_kr@u-blox.com
Support:	support_kr@u-blox.com

Regional Office Taiwan

Phone:	+886 2 2657 1090
E-mail:	info_tw@u-blox.com
Support:	support_tw@u-blox.com