Vishay Semiconductors

Thyristor High Voltage, Phase Control SCR, 40 A

www.vishay.com

PRIMARY CHARACTERISTICS					
I _{T(AV)}	35 A				
V _{DRM} /V _{RRM}	1600 V				
V _{TM}	1.45 V				
I _{GT}	150 mA				
TJ	-40 °C to +125 °C				
Package	TO-247AD 3L				
Circuit configuration	Single SCR				

FEATURES

- AEC-Q101 qualified meets JESD 201 class 1A whisker test
- Flexible solution for reliable AC power rectification

COMPLIANT HALOGEN

- Easy control peak current at charger power up to reduce passive / electromechanical components
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- On-board and off-board EV / HEV battery chargers
- Renewable energy inverters

DESCRIPTION

The VS-40TPS16LHM3 high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications.

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
I _{T(AV)}	Sinusoidal waveform	35	٨			
I _{RMS}		55	— A			
V _{RRM} /V _{DRM}		1600	V			
I _{TSM}		500	A			
V _T	40 A, T _J = 25 °C	1.45	V			
dv/dt		1000	V/µs			
di/dt		100	A/µs			
TJ		-40 to +125	°C			

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} / V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} / I _{DRM} AT 125 °C mA				
VS-40TPS16LHM3	1600	1700	10				

www.vishay.com

Vishay Semiconductors

5				
SYMBOL	TEST CONDITIONS		VALUES	UNITS
I _{T(AV)}	$T_C = 79$ °C, 180° conduction half sine wave	;	35	
I _{T(RMS)}		55	A	
	10 ms sine pulse, rated V_{RRM} applied		420	
ITSM	10 ms sine pulse, no voltage reapplied		500	
121	10 ms sine pulse, rated V _{RRM} applied		880	A2-
1-1	10 ms sine pulse, no voltage reapplied	ij – ijiliax.	1250	A ² s
l²√t	t = 0.1 ms to 10 ms, no voltage reapplied		12 500	A²√s
V _{T(TO)1}			1.02	V
V _{T(TO)2}	T 405.00		1.23	
r _{t1}	$1_{\rm J} = 125 {}^{-}{\rm C}$		9.74	mΩ
r _{t2}			7.50	
N	110 A, T _J = 25 °C		1.92	v
VTM	90 A, T _J = 25 °C		1.82	V
dl/dt	T _J = 25 °C	100	A∕µs	
I _H	Anode supply = 6 V, resistive load, initial T_J = 1 A, I_T = 25 °C			
١L	Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$		350	
	T _J = 25 °C		0.5	mA
I _{RRM} /I _{DRM}	$T_J = 125 \text{ °C}$ $V_R = \text{rated } V_{RRM}/V_{DR}$	$V_{\rm R}$ = rated $V_{\rm RRM}/V_{\rm DRM}$		
dV/dt	$T_J = T_J$ maximum, linear to 80 % V_{DRM} , R_g -	k = open	1000	V/µs
	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & \\ \hline & & & & & & & &$	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONDITIONS \\ \hline I_{T(AV)} & T_C = 79 \ ^{\circ}C, 180 \ ^{\circ} \ conduction half sine wave \\ \hline I_{T(RMS)} & \\ \hline I_{T(RMS)} & \\ \hline I_{TSM} & \hline 10 \ ms \ sine \ pulse, \ rated \ V_{RRM} \ applied \\ \hline 10 \ ms \ sine \ pulse, \ no \ voltage \ reapplied \\ \hline 10 \ ms \ sine \ pulse, \ rated \ V_{RRM} \ applied \\ \hline 10 \ ms \ sine \ pulse, \ no \ voltage \ reapplied \\ \hline 10 \ ms \ sine \ pulse, \ no \ voltage \ reapplied \\ \hline 10 \ ms \ sine \ pulse, \ no \ voltage \ reapplied \\ \hline 10 \ ms \ sine \ pulse, \ no \ voltage \ reapplied \\ \hline I^2 t & t = 0.1 \ ms \ to \ 10 \ ms, \ no \ voltage \ reapplied \\ \hline V_{T(TO)1} & \\ \hline V_{T(TO)2} & \\ \hline V_{T(TO)2} & \\ \hline V_{T(TO)2} & \\ \hline r_{t2} & \hline 110 \ A, \ T_J = 25 \ ^{\circ}C & \\ \hline V_{TM} & \hline 110 \ A, \ T_J = 25 \ ^{\circ}C & \\ \hline I_H & Anode \ supply = 6 \ V, \ resistive \ load, \ initial \ T_J \\ \hline I_L & Anode \ supply = 6 \ V, \ resistive \ load, \ T_J = 25 \ ^{\circ}C & \\ \hline I_{RRM/IDRM} & \hline T_J = 25 \ ^{\circ}C & \\ \hline V_R = \ rated \ V_{RRM}/V_{DR} & \\ \hline \end{array}$	$\begin{tabular}{ c c c c } \hline \mathbf{SYMBOL} & $\mathbf{T}_{C} = 79 \ ^{\circ}C, 180^{\circ}$ conduction half sine wave $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$\begin{tabular}{ c c c c } \hline $YMBOL$ & $TEST CONDITIONS$ & $VALUES$ \\ \hline $I_{T(AV)$}$ $T_C = 79 °C, 180° conduction half sine wave$ & 35 \\ \hline $I_{T(RMS)$}$ & 55 \\ \hline $I_{T(RMS)$}$ & 55 \\ \hline $I_{T(RMS)$}$ & 10 ms sine pulse, rated V_{RRM} applied$ \\ \hline $I0$ ms sine pulse, no voltage reapplied$ & $I10$ ms sine pulse, no voltage reapplied$ \\ \hline $I^2 \ 10 ms sine pulse, no voltage reapplied$ & $I10$ ms sine pulse, no voltage reapplied$ & $I10$ ms sine pulse, no voltage reapplied$ & $I250$ & 1250 $

TRIGGERING							
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS			
Maximum peak gate power	P _{GM}			10	W		
Maximum average gate power	P _{G(AV)}			2.5	vv		
Maximum peak gate current	I _{GM}			2.5	А		
Maximum peak negative gate voltage	- V _{GM}			10	V		
	V _{GT}	$T_J = -40 \ ^{\circ}C$	Anode supply = 6 V resistive load	4.0			
Maximum required DC gate voltage to trigger		T _J = 25 °C		2.5	V		
		T _J = 125 °C		1.7			
		T _J = -40 °C		270			
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	mA		
		T _J = 125 °C		80			
Maximum DC gate voltage not to trigger	V _{GD}	T 105 °C V reted	0.25	V			
Maximum DC gate current not to trigger	I _{GD}	$T_J = 125 \text{ °C}, V_{DRM} = \text{rated value}$		6	mA		

Revision: 23-Feb-18 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Document Number: 96134

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction and storage temperature range	T _J , T _{Stg}		-40 to +125	°C			
Maximum thermal resistance, junction to case R _{thJC}		DC operation	0.6				
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	40	°C/W			
Maximum thermal resistance, case to heat sink	R _{thCS}	Mounting surface, smooth, and greased	0.2				
Approximate weight			6	g			
Approximate weight			0.21	oz.			
Mounting torgueminimum			6 (5)	kgf · cm			
maximum			12 (10)	(lbf · in)			
Marking device		Case style TO-247AD 3L	40TPS1	6LH			

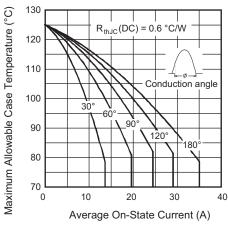
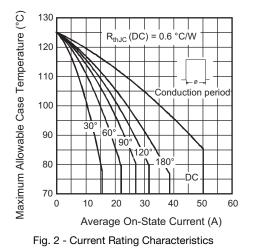
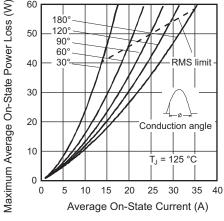




Fig. 1 - Current Rating Characteristics

60

Fig. 3 - On-State Power Loss Characteristics

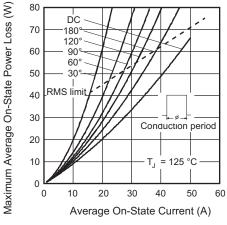
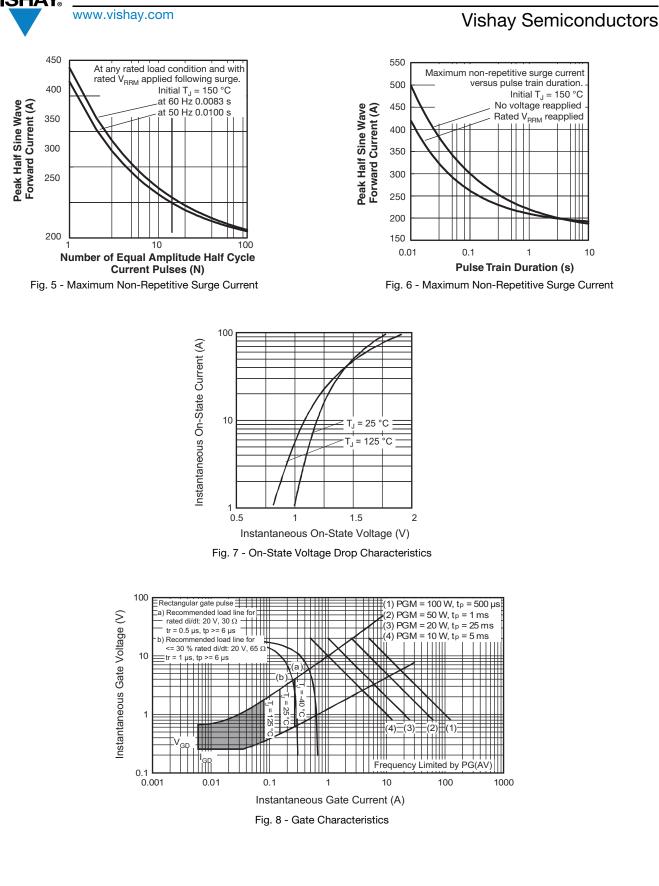
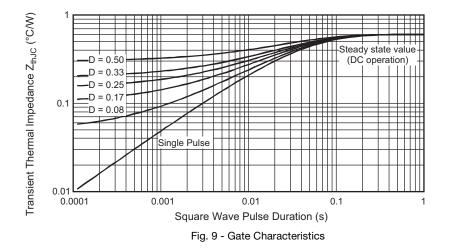




Fig. 4 - On-State Power Loss Characteristics

Vishay Semiconductors

ORDERING INFORMATION TABLE

www.vishay.com

ISHAY

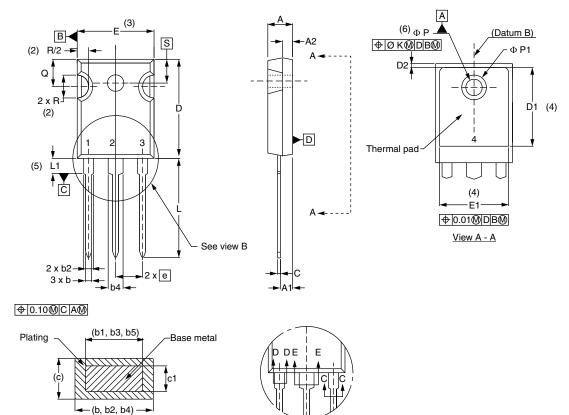
Device code	VS-	40	т	Р	S	16	L	н	М3
	1	2	3	4	5	6	7	8	9
	1 .	- Visł	nay Sem	niconduc	tors pro	duct			
	2 -	Cur	rent rati	ng (40 =	40 A)				
	3 -	Circ	uit conf	iguratior	1:				
		T =	thyristo	r					
	4	Pac	kage:						
		P =	TO-247						
	5 -	. Тур	e of silio	con:					
		S =	standar	d recove	ery rectif	ier	г		
	6	· Volt	age rati	ngs —				16 = 16	600 V
	7 -	L=	long lea	lds			_		
	8	• H =	AEC-Q	101 qua	lified				
	9 -	- Env	vironmer	ntal digit:					
		М3	= halog	en-free,	RoHS-c	ompliar	nt, and t	erminat	ions lea

ORDERING INFORMATION (Example)						
PREFERRED P/N QUANTITY PER TUBE MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION						
VS-40TPS16LHM3	25	500	Antistatic plastic tubes			

LINKS TO RELATED DOCUMENTS				
Dimensions TO-247AD 3L www.vishay.com/doc?95626				
Part marking information TO-247AD 3L www.vishay.com/doc?95007				

Revision: 23-Feb-18

Document Number: 96134


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

TO-247AD 3L

DIMENSIONS in millimeters and inches

View B

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.34	0.065	0.092	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
с	0.38	0.89	0.015	0.035	
c1	0.38	0.84	0.015	0.033	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

(2, 52, 51) (4) Section C - C, D - D, E - E

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STNIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.46	-	0.53	-	
е	5.46	BSC	0.215	5 BSC	
ØК	0.2	254	0.010		
L	19.81	20.32	0.780	0.800	
L1	3.71	4.29	0.146	0.169	
ØР	3.56	3.66	0.14	0.144	
Ø P1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	0.178	0.216	
S	5.51 BSC		0.217	' BSC	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

- ⁽³⁾ Dimension D and E do not include mold flash. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- ⁽⁵⁾ Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- ⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-247 with exception of dimension A min., D, E min., Q min., S, and note 4

 Revision: 06-Mar-2020
 1
 Document Number: 95626

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024