

Product Change Notification

Product Group: OPT/Fri Dec 17, 2021/PCN-OPT-1191-2021-REV-0

TSMF1000, TSMF1020, TSMF1030 - Change in Chip

DESCRIPTION OF CHANGE: A new chip generation will be introduced in TSMF1000, TSMF1020, TSMF1030 dome lens products.

With the new chip, the devices will have more than 5 times increased radiant intensity and narrow emission angle. The high performance chip allows customers to achieve the required intensity with lower driving current.

REASON FOR CHANGE: Introduction of new chip generation with improved electro-optical performance.

EXPECTED INFLUENCE ON QUALITY/RELIABILTY/PERFORMANCE: No influence on quality and reliability expected. Nevertheless, we recommend

to test the product in customers application.

PART NUMBERS/SERIES/FAMILIES AFFECTED: TSMF1000, TSMF1000-GS15, TSMF1020, TSMF1020-GS15, TSMF1030

VISHAY BRAND(s): Vishay Semiconductors

TIME SCHEDULE:

Start Shipment Date: Sun May 1, 2022

SAMPLE AVAILABILITY: 31. Jan.2022

PRODUCT IDENTIFICATION: Date code

QUALIFICATION DATA: Available upon request

This PCN is considered approved, without further notification, unless we receive specific customer concerns before Fri Apr 15, 2022 or as specified by contract.

ISSUED BY: Mohankumar Kannusamy, mohankumar.kannusamy@vishay.com

For further information, please contact your regional Vishay office.

CONTACT INFORMATION:

Americas	Europe	Asia		
VISHAY Intertechnologies, Inc.	VISHAY Semiconductor GmbH	+1 408-240-5687		
2585 Junction Avenue	Theresienstr. 2	25 Tampines Street 92		
SanJose California United States 95134	Heilbronn Germany 74072	Singapore Singapore 528877		
Phone: 1-408-567-8358	Phone: +49-7131-7498-645	Phone: +65 6780 7879		
Fax: +1 408-240-5687	Fax: +49-7131-67-3144	Fax: +65 6780 7897		

TSMF1000, TSMF1020, TSMF1030 - Change in Chip

Change overview

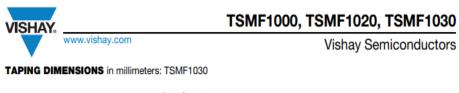
PCN: OPT-1191-2021 Rev. 0

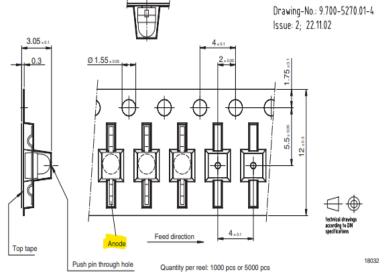
Change Overview

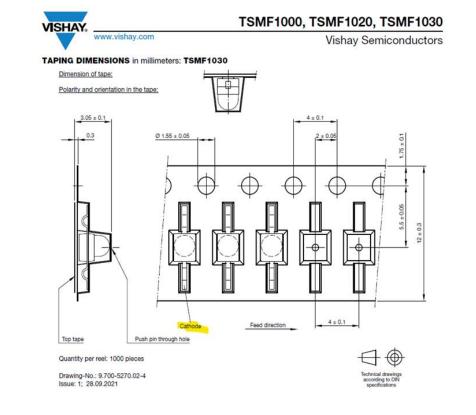
Before PCN

BASIC CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified) PARAMETER **TEST CONDITION** SYMBOL MIN. TYP. MAX. UNIT $I_E = 20 \text{ mA}$ V_F 1.3 1.5 V Forward voltage $I_F = 1 \text{ A}, t_o = 100 \, \mu \text{s}$ V_E 2.4 Temperature coefficient of V_F TKVF - 1.8 mV/K $I_F = 1 \text{ mA}$ 10 Reverse current $V_R = 5 \text{ V}$ ln: μА VR = 0 V, f = 1 MHz, E = 0 Junction capacitance C 160 pF $I_c = 20 \text{ mA}$ la. mW/sr Radiant intensity 25 $I_E = 100 \text{ mA}, t_0 = 100 \text{ µs}$ mW/sr Radiant power $I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$ 0. 35 mW Temperature coefficient of on $I_F = 20 \text{ mA}$ TKo. -0.696/K Angle of half intensity ± 17 deg Φ Peak wavelength Is = 20 mA λ_p 890 nm $I_F = 20 \text{ mA}$ 40 Spectral bandwidth $\Delta \lambda$ nm Temperature coefficient of λ_o $I_F = 20 \text{ mA}$ TKλ 0.2 nm/K Rise time $I_F = 20 \text{ mA}$ t, 30 ns Fall time 30 $I_F = 20 \text{ mA}$ t_e ns: Cut-off frequency I_{DC} = 70 mA, I_{AC} = 30 mA pp 12 MHz 1.2 Virtual source diameter mm

After PCN


PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 20 mA	VF		1.3	1.5	V
	$I_F = 100 \text{ mA}, t_p = 100 \text{ µs}$	VF		1.5		٧
	$I_F = 1 \text{ A, } t_D = 100 \ \mu\text{s}$	V _F	*	2.6		V
Temperature coefficient of V _F	I _F = 20 mA	TK _{VF}		-1.4		mV/K
Reverse current		I _R	Not designed for reverse operation			μА
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Ci		56		pF
Radiant intensity	I _F = 20 mA	l _e	15	27	40	mW/sr
	$I_F = 100 \text{ mA}, t_p = 100 \mu\text{s}$	l _e	+	155		mW/sr
Radiant power	I _F = 20 mA, t _p = 20 ms	Φe		10		mW
Temperature coefficient of \$\phi_0\$	I _F = 20 mA	TΚφ _e		-0.3		%/K
Angle of half intensity		φ	+3	±11		*
Peak wavelength	I _F = 20 mA	λp	+3	890		nm
Spectral bandwidth	I _F = 20 mA	Δλ		35		nm
Temperature coefficient of λ _p	I _F = 20 mA	ΤΚλρ		0.3		nm/K
Rise time	I _F = 20 mA	t.	+	15	- 2	ns
Fall time	I _F = 20 mA	t,	*	15		ns


Main changes:


- Higher radiant intensity (Typical : 5mw/sr to 27mw/sr)
- Emission angle/angle of half intensity has been reduced from +-17 $^{\circ}$ to +-11 $^{\circ}$

Before PCN

After PCN

- Changed device orientation

© 2020 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED.

