

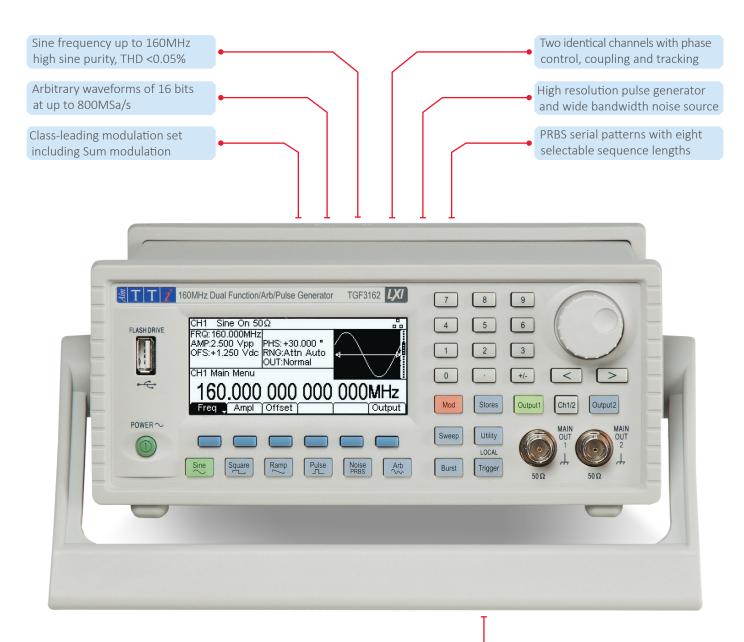
TGF3000 Series Dual Channel Arbitrary Function Generators

Frequency up to 160MHz, 15 digits or 1µHz resolution

Arbitrary waveforms up to 16 bits at 800MSa/s

Wideband noise generator | high resolution pulse generator

Comprehensive internal/external digital and analog modulations


Two identical channels with phase control, coupling and tracking

USB and LXI compliant LAN interfaces, plus optional GPIB interface

aimtti.com | aimtti.us

TGF3000 Series - Key Features

The TGF3000 series is the latest function/arbitrary generator series from Aim-TTi offering class-leading performance and unrivalled value for money.

A frequency capability of up to 160MHz is combined with two identical full performance channels that can operate as independent generators or in coupled or tracking modes. Precise channel to channel phase control with a resolution of 0.001° is provided.

A wide range of built-in waveforms is included and custom arbitrary waveforms can be used at sample speeds up to 800MSa/s and replay rates up to 80MHz. PC based arbitrary waveform generation and editing software is provided.

High resolution, low jitter pulses can be generated as can wide bandwidth white noise.

A extensive array of modulations is provided using internal and external sources. Gated, burst and sweep modes can use internal or external trigger sources.

Remote control via USB and LXI compliant LAN (standard) can be supplemented by optional GPIB if required.

USB and LXI compliant LAN interfaces, plus optional GPIB.

Model Comparison	TGF3162	TGF3082
No. of channels	2	2
Max frequency (sine)	160MHz	80MHz
Vertical bits / Sample rate	16 bits / 800MSa/s	14 bits / 400MSa/s
Noise bandwidth	100MHz	62.5MHz
Model specific features*		
PRBS Generator	Standard	Optional*
Harmonics Generator	Standard	Optional*
Sum Modulation	Standard	Optional*
Inter-channel coupling & tracking	Standard	Optional*

* The four features listed as model specific can be added to the TGF3082 by software unlocking. (option GU3082). Most other features and specifications are common to both models (see technical specifications section for full details).

FEATURES SUMMARY

- 0.001mHz to 80MHz (TGF3082) or 160MHz (TGF3162) sine frequency range
- ▶ High sine wave purity with low phase noise and jitter, audio band THD down to 0.05%
- Square waves up to 50MHz with variable duty cycle, edge speeds down to 5ns
- ▶ Resolution of up to 15 digits or 1µHz, high stability TCXO timebase
- Two identical channels independent or linked with coupled and tracking modes *
- Inter-channel phase offset of -360° to +360° with 0.001° resolution
- Pulse generation with 100ps width resolution, <30ps jitter, and variable rise/fall times</p>
- Wideband noise generator with up to 100MHz noise bandwidth
- PRBS pseudo-random bit sequence generation with 8 sequence lengths *
- Harmonics generation using up to 16 harmonics *
- Wide range of standard and arbitrary waveforms built-in
- Arbitrary waveforms of 14-bits / 400MSa/s (TGF3082) or 16-bits / 800MSa/s (TGF3162)
- Waveform Manager Plus for Windows editing software included
- ▶ Front USB host socket for waveform storage and file transfers using Flash drives
- Comprehensive internal/external digital and analog modulation set including Sum * modulation
- Modulation frequencies up to 10MHz internal and 5MHz external
- Gate and Burst modes with internal and external triggering
- Bi-directional linear and logarithmic sweep using internal or external triggering
- ▶ 125MHz frequency counter/timer with five measurement modes
- Compact half-rack 2U casing with protective buffers and handle
- Programmable via USB and LAN (LXI) interfaces; GPIB optional

HIGHER FREQUENCIES

The TGF3000 Series out-performs other generators in its price range by offering sine waves up to 160MHz and square waves up to 50MHz.

Exceptional frequency precision

The frequency of these waveforms can be set with up to 15 digits or one micro hertz of resolution.

The DDS based frequency generation system uses a high stability TCXO timebase oscillator.

Waveform quality

The TGF3000 Series generates high purity sine waves with low harmonic distortion and low phase noise. Audio band THD is significantly better than similar generators at just 0.05%.

Built-in Waveforms

A large number of standard and pre-built arbitrary waveforms are built into the generator. These include triangles, ramps, sinc, logarithmics, exponentials, gaussians and cardiac (among others).

High sampling rate allows higher repetition rates than other generators.

CH1 Sine On 50Ω FRQ: 160.000MHz AMP:2.500 Vpp OFS:+1.250 Vdc CH1 Main Menu CH1 Main Menu 160.000 000 000 000 000MHz Freq Ampl Offset Unit High quality sine waves at up to 160MHz (TGF3162)

CH1 Sinc On 50Ω FRQ:20.8650MHz AMP:8.550 Vpp PHS:+0.000 ° OFS:+0.000 Vdc RNG:Attn Auto OUT:Normal CH1 Arb Shape Menu Sinc Gauss Lrntz DLrntz ➡ Done

or 80MHz (TGF3082)

Built-in complex waveforms supplemented by more than 100 loadable additional waveforms

CUSTOM ARBITRARY WAVEFORMS

Custom arbitrary waveforms of 16 bit vertical resolution and up to 8192 points can be defined and replayed at sampling rates up to 800MS/s and repetition rates up to 800MHz.

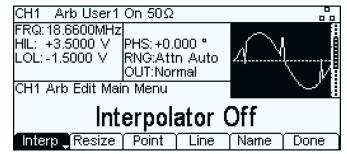
Waveform Editing

Basic waveform creation and editing is built into the generator. However for complex waveforms Waveform Manager Plus software is included.

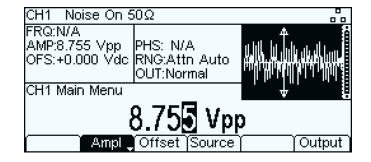
This Windows based package enables almost any waveform shape to be created using mathematical expressions, freehand drawing, waveform libraries, and import of waveforms using the Clip Board.

Waveform Transfer and Storage

Waveforms can be be stored on Flash drives using the front panel mounted USB host interface.


Waveforms can be transferred from or to a PC either using a Flash drive, or via the digital interfaces (USB, LAN or GPIB).

WIDEBAND NOISE GENERATOR


The Noise function provides wideband gaussian noise at bandwidths up to 100MHz and crest factor of more than five.

Noise can be used both as a carrier waveform and as a modulating waveform for AM, FM, PM, PWM and SUM modulation types.

As a carrier it can be AM, ASK or SUM modulated.

Arbitrary waveforms can be generated and edited within the instrument. Complex wave shapes are generated using the supplied PC software Waveform Manager Plus- see page 9

HIGH RESOLUTION PULSE GENERATOR

The pulse generator function offers an exceptionally high pulse width resolution of 100ps over a period range from 50ns to 1000s.

The pulse edge speed is fully variable from 10ns to 1ms. Pulse jitter is dramatically lower than any comparable generator at only 30ps.

FREQUENCY COUNTER/TIMER

The frequency counter function allows external signals to be measured in terms of frequency, period, pulse width or duty cycle.

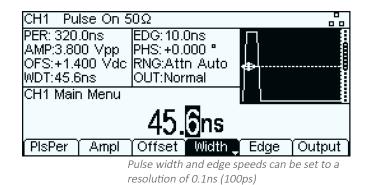
The frequency range is 0.1Hz to 125MHz with a measurement resolution of up to seven digits.

Both generator channels remain operational when the counter is is use.

PRBS GENERATOR *

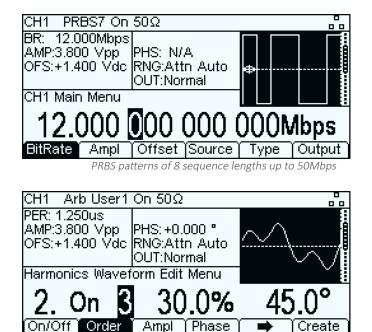
PRBS (Pseudo-Random Bit Sequence) is a binary waveform type that is widely used within secure communications systems.

PRBS is offered with a choice of 8 sequence lengths at rates between 1mbps and 50Mbps.


PRBS can be used as both a carrier waveform and a modulation.

HARMONICS GENERATOR *

The harmonics generator function built into the TGF3162 enables waveform to be created by the addition of sine wave harmonics.


Up to 16 harmonics can be used, chosen from up to the 50th order. The amplitude and phase can be individually set for each harmonic.

NOTE: Features marked * are standard on the TGF3162 and optional on the TGF3082.

The external frequency counter function can measure period, pulse width or duty cycle

The harmonics generator enables waveforms to be constructed using up to 16 sine harmonics

TWO CHANNEL OPERATION

The two channels are identical with no performance limitations giving maximum flexibility and value for money.

Independent Channel Operation

The two channels can be operated completely independently as if they were two separate generators. (Note that external trigger and external modulation inputs are shared).

Relative Phase

The relative phase can be set from-360 degrees to +360 degrees with 0.001° resolution. Pressing the 'align' key phase synchronises the two channels with the specified phase offset.

Coupled Operation *

The frequencies of the two channels can be coupled such that changes on one are applied to the other.

Amplitudes (and DC offsets) of the two channels can be coupled such that changes are applied to both simultaneously.

Outputs can be coupled such that the output on/off switches both channels simultaneously.

Tracking Operation *

When in tracking mode both channels behave as one channel. If inverse tracking is selected, both channel still behave as one channel except that the output of channel 2 is inverted.

EXTENSIVE DIGITAL & ANALOG MODULATIONS

A large set of modulation types are built-in including AM, FM, PM, FSK, ASK, BPSK, PWM and SUM.

All standard and arbitrary waveforms can modulated as the carrier, although Noise, Pulse and PRBS are limited to AM and SUM modulations plus PWM for Pulse.

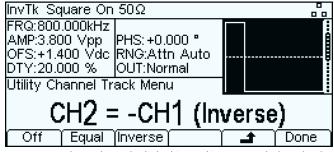
Internal Digital Modulations

AM, FM, PM, PWM and SUM modulations can use an internal modulation source based upon any standard or arbitrary waveform type or Noise. A very wide modulation frequency range of 1μ Hz to 10MHz can be used.

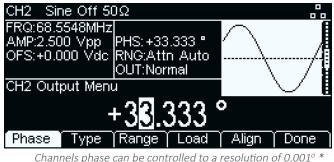
FSK, ASK, and BPSK use a square wave modulation signal adjustable between 2mHz and 10MHz.

External Analog Modulation and Triggering

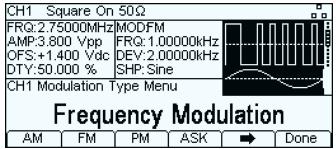
All modulation types can use an external modulation signal, either analog (AM, FM, PM, PWM and SUM) or digital triggering (FSK, ASK, and BPSK).

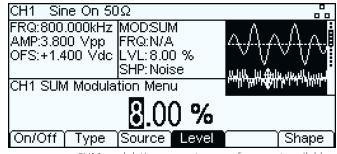

The analog modulation input bandwidth is DC to 5MHz.

SUM Modulation *


SUM modulation, not offered by most other products, enables the modulation waveform to be added to the carrier at any percentage.

All waveform types including Pulse and PRBS can be SUM modulated. This is particularly useful using Noise as the modulator to test circuit resilience with noisy signals.


NOTE: Features marked * are standard on the TGF3162 and optional on the TGF3082.


Channels can be linked in tracking or coupled modes *

(CH2 display is reversed for ease of identification)

Extensive digital and analog modulations with unusually wide modulation bandwidths

SUM modulation generates waveforms not available through conventional modulation schemes *

GATE, BURST & SWEEP

Comprehensive facilities for gating, burst triggering and frequency sweeping of signals is provided.

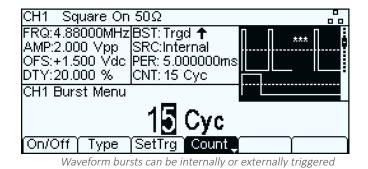
Trigger Signal

The trigger signal can be manual from the front panel key, internal from the internal trigger generator, external from the trigger-in socket, or remote via a bus command. It can be used for gating, triggered burst or triggered sweep.

The internal trigger generator is adjustable between 2mHz and 50MHz.

Gating

In gated mode Waveform will run while the gate signal is true and stop while false. The start/stop phase is settable between -360.0° to $+360.0^{\circ}$ to 0.001° resolution.


Triggered Burst

In Burst mode, each active edge of the trigger will produce one burst of the waveform.

The number of cycles in a burst can be set between 1 and 2,147,483,647 (or infinite). The burst start/end phase angle is settable between- 360.0° to $+360.0^{\circ}$ to 0.001° resolution.

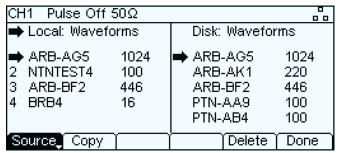
Sweep

Phase continuous sweep is available for all standard and arbitrary waveforms except for Pulse, PRBS and Noise. The sweep range is from 1 μ Hz through to the maximum for the chosen carrier waveform. Start and stop frequencies can be set independently. The sweep can be linear or logarithmic, triggered or continuous with a period between 1 μ Hz and 500s.

Wide range phase continuous linear or logarithmic sweep

WAVEFORM/SETUP STORAGE USB Flash Drive Interface

A front mounted USB host socket enables the use of flash memory disk drives which can store up to 1,000 waveforms and 1,000 setups.


Unlimited Waveform Storage

These drives can be used both to store waveforms permanently and to transfer waveforms from or to a PC.

Arbitrary waveform storage within the instrument is limited to four waveforms, however each flash drive can store up to 1000 waveforms which can be accessed using the instruments file handling utilities.

Storage of Instrument Set-ups

Up to nine complete set-ups of the instrument can be stored within its own non-volatile memory. Up to 1000 further set-ups can be stored on each flash drive.

Waveforms and set-ups can be stored on a USB Flash drive as well as within the instrument

FREQUENCY REFERENCE

The generators use a high quality TCXO crystal as the internal frequency reference providing 1ppm accuracy and stability.

If a higher accuracy or stability is required, an external 10MHz reference signal (from an off-air standard for example) can be applied to the Ref. Clock input.

The internal 10MHz clock is available as a rear panel output for synchronisation with external equipment.

OTHER INPUTS

In addition to the Reference Clock input and output sockets, rear panel inputs for Modulation and Trigger are provided. These are used both for the modulation and triggering/gating functions and for the external frequency counter function.

SYNC OUTPUT

Channel 2 can be configured to be a Sync output for channel 1.

Sync can be chosen to to perform a variety tasks depending upon the waveform type and the application.

MAIN OUTPUTS

The main outputs can provide up to 10V pk-pk into 50Ω (20V pk-pk EMF) for frequencies up to 50MHz.

Maximum amplitude is reduced for higher frequencies (sine and arbitrary waveforms only).

High levels of DC offset can be set in conjunction with low signal levels, and the attenuator can be fixed to prevent glitches when changing levels.

Amplitudes can be entered as peak to peak voltage plus offset or in terms of high level and low level

The amplitudes are shown relative to a 50Ω load impedance or as the open circuit EMF values.

Alternatively the user can enter any load value between 1Ω to $10k\Omega$ and the amplitude will be calculated accordingly.

FULL REMOTE CONTROL

All functions of the generators can be controlled from the digital interfaces. Arbitrary waveform data can also be loaded using these interfaces.

An IVI driver for Windows is supplied. This provides support for common applications such as LabView*, LabWindows* and Agilent-VEE*.

The LAN interface uses a standard 100/10 base-T Ethernet hardware connection with ICMP and TCP/IP Protocol for connection to a Local Area Network or direct connection to a single PC.

This interface supports LXI and is the most appropriate for larger system use because of its scalable nature.

LXI Compliance

systems.

The LAN interface is compliant with LXI (LAN eXtensions for Instrumentation). LXI is the next-generation, LAN-based modular architecture standard for automated test systems managed by the LXI Consortium, and is expected to become the successor to GPIB in many

USB provides a simple and convenient means of connection to a PC and is particularly appropriate for small system use. USB has effectively replaced RS232 in many applications.


The interface uses a standard USB 2.0 hardware connection and is implemented as virtual-COM port. A Windows* USB driver is provided.

As well as the rear mounted USB device interface connector, a front mounted USB Host interface connector allows USB Flash memory to be connected.

An optional GPIB (IEEE-488) interface is available. When fitted, the instruments retain the USB and LAN interfaces giving them even greater flexibility.

* LabView and LabWindows are trademarks of National Instruments.
Agilent-VEE (HP/Keysight VEE) is a trademark of Keysight Technologies Inc.
* USB interface is supported for all versions of Windows from 2000 onwards
Windows is a trademark of Microsoft Inc.

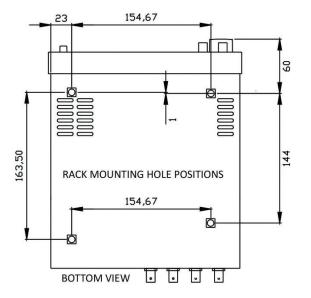
Output levels can be entered as high level and low level as an alternative to amplitude and offset

TGF3000 Series - Mechanical | Supplied Software

BENCH-TOP OPERATION

The generators are highly compact and use a minimum of bench space.

Protective mouldings guard against knock damage and a multi-position stand angles the instrument conveniently as well as providing a carry handle.

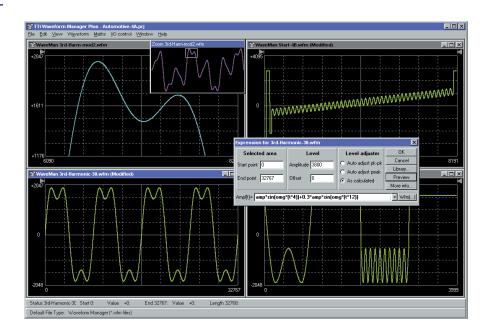


RACK MOUNTING

For system applications the generators can be rack mounted.

With the protective mouldings and handle removed the size is half rack width by 2U high.

A 2U rack mounting kit is available suitable for one or two instruments.


WAVEFORM SOFTWARE

Both generators are supplied with Waveform Manager Plus software for Windows.

This PC software enables complex arbitrary waveforms to be created and edited.

Waveforms can be built in any number of sections using any combination of standard waveforms, mathematical expressions, drawn waveforms, uploaded waveforms, imported waveforms and existing stored waveforms.

Waveforms can be transfered to the generator using either the Flash drive interface or the bus interfaces.

Technical Specifications - TGF3162 | TGF3082

General specifications apply for the temperature range 5°C to 40°C. Accuracy specifications apply for the temperature range 18°C to 28°C after 30 minutes warm-up, at maximum output into 50Ω. Typical specifications are determined by design and are not guaranteed. Information is subject to change without notice.

WAVE	EFORMS			
Stand	lard Waveforms	Negative Ramp (0% Ramp symmetry), Pulse, N	loise (Gau	Ramp symmetry), Positive Ramp (100% Ramp symmetry), ssian), PRBS*, DC, Sin(x)/x, Exponential Rise, Exponential Fall, aussian, Lorentz, D-Lorentz, 4 User Defined Arbitrary Waveforms.
SINE		TGF3162		TGF3082 (where different)
Frequ	iency Range:	1µHz to 160MHz		1µHz to 80MHz
Frequ	iency Resolution:	1μHz, 15 digits		1μHz, 14 digits
Outpu	ut Level:	 ≤ 50MHz 10mVp-p to 10Vp-p into 50Ω ≤ 100MHz 10mVp-p to 5Vp-p into 50Ω ≤ 160MHz 10mVp-p to 2.5Vp-p into 50Ω 		≤ 80MHz 10mVp-p to 5Vp-p into 50Ω N/A
Ampli	itude Flatness	≤10MHz: ±0.1dB		
(1V p-	-p relative to 1kHz):	≤100MHz: ±0.2dB ≤160MHz: ±0.6dB		≤80MHz: ±0.2dB N/A
Harm	onic Distortion (1V p-p)	≤ 10MHz -60dBc ≤ 50MHz -50dBc < 160MHz -25dBc	1	< 2014/17 10-40-
		≤ 160 MHz -35 dBc		≤ 80MHz -40dBc
•••••	Harmonic Distortion DC to 20kHz:	<0.05% (Typical)		<0.07% (Typical)
••••	Harmonic Spurii:	-65dBc		
Phase	e Noise:	-113dBc/Hz (10MHz, 1V p-p, 10kHz offset)		
SQUA		TGF3162		TGF3082 (where different)
Frequ	iency Range:	1μHz to 50MHz		
Frequ	iency Resolution:	1μHz, 14 digits		
Outpu	ut Level:	10mVp-p to 10Vp-p into 50Ω		
Rise a	nd Fall Times:	5ns Fixed		10ns Fixed
Aberr	ations (Typical):	±5% of amplitude		
Jitter	(RMS):	<30ps (cycle to cycle)		
RAMF	þ	TGF3162		TGF3082 (where different)
Frequ	iency Range:	1μHz to 5MHz		
Frequ	ency Resolution:	1μHz, 13 digits		
Outpu	ut Level:	10mVp-p to 10Vp-p into 50Ω		
Linear	rity Error:	<0.1% to 200kHz		<0.1% to 100kHz
Variat	ole Symmetry:	0.00 % to 100.00 %, 0.01% resolution		
Pulse		TGF3162		TGF3082 (where different)
Frequ	iency Range:	1mHz to 20MHz		
Frequ	iency Resolution:	1mHz, 11 digits		
Outpu	ut Level:	10mVp-p to 10Vp-p into 50Ω		
Aberr	ations (Typical):	±3% of amplitude		±5% of amplitude
Jitter	RMS:	<30ps (cycle to cycle)		
Rise a	and Fall Times:	Range: 10ns to 1ms (10% to 90%)		
(Rise 1	time = Fall time)	Resolution: 100ps ; Accuracy: ±500ps ±0.01%	of period	
Width	ו:	Range: 25ns to 999.99999975s		
		Resolution: 100ps; Accuracy: ±200ps ±0.01% Duty: 0.01% to 99.99%, 0.01% resolutio		
Arbitr	rarv	TGF3162	1	TGF3082 (where different)
	•		. Logarithr	nic Fall, Haversine, Cardiac, Gaussian, Lorentz and D-Lorentz). Up
				downloading of waveform data via remote interfaces or from the
instru	ıment's front panel.			
Wave	form Memory Size:	8192 points		
Vertic	al Resolution:	16 bits		14 bits
Frequ	iency Range:	1μHz to 80MHz		1μHz to 40MHz
Frequ	iency Resolution:	1μHz, 14 digits		
Outpu	ut Level:	10mVp-p to 10Vpp into 50Ω (5Vpp max. above	e 50MHz)	
Samp	ling rate:	800MSa/s		400MSa/s
Point	to Point Jitter:	1.25ns Typical		2.5ns Typical
•••••				
Rise a	and Fall Times:	<5ns		<8ns
•••••	ind Fall Times: ive Analogue Bandwidth (-3dB):	<5ns 100MHz		<8ns 62.5MHz

Technical Specifications - TGF3162 | TGF3082 (continued)

NOISE	TGF3162		TGF3082 (where different)
Gaussian White Noise: Noise can also	be used as modulating waveform.		
Bandwidth (-3dB):	100MHz		62.5MHz
Noise crest factor (Vp/Vrms):	5.16	<i></i>	6.4
Output Level:	10mVp-p to 10Vpp into 50Ω	• • • • • • • • • • • •	
•			
PRBS	Standard on TGF3162		Optional on TGF3082 with GU3082
Bit Rate:	1mbps to 50Mbps, 1µbps resolution		
Sequence Length:	2 ^m – 1, where m = 7, 9, 11, 15, 20, 23, 29 or 3	1	
Rise and Fall Times	5ns Fixed		
Output Level:	10mVp-p to 10Vpp into 50Ω		
Harmonic Waveforms	Standard on TGF3162	I	Optional on TGF3082 with GU3082
	and stored in user-defined arbitrary waveform loca	tions	
Frequency Range:	1µHz to 80MHz		1μHz to 40MHz
Frequency Resolution:	1μHz, 14 digits		
Harmonic Order:	1 to 50, Up to 16 different harmonics order ca	an be defir	ned
Harmonic Amplitude:	0.0% to 100.0% of output amplitude, 0.1% res	solution	
Harmonic Phase:	-360.0 to +360.0 degrees, 0.1 degree resolution	on	
Output Level:	10mVp-p to 10Vpp into 50Ω, (5V p-p max abo	ve 50MHz	.)
Internal Frequency Reference			
Initial Setting Error:	<+ 1ppm		
	<± 1ppm		
Oscillator Ageing Rate:	<± 1ppm first year		
Temperature Stability:	<1ppm over the specified temperature range		
MODULATION	TGF3162		TGF3082 (where different)
AM (Amplitude Modulation) Normal	& Suppressed Carrier		
Carrier Waveforms:	Sine, Square, Ramp, Pulse, Noise, Arb, PRBS*	(max. cari	rier frequency 50MHz)
Max. Carrier Frequency	50MHz		25MHz
Modulation Source:	Internal/External		• • • • • • • • • • • • • • • • • • • •
Internal Modulating Waveforms:		Trianglo G	aussian Noise, DC, Sinc, Exponential Rise, Exponential Fall,
			Lorentz, D-Lorentz, Cardiac, User Defined Arbs, PRBS*
Internal Modulating Frequency:	1μ Hz to 10MHz, 1μ Hz resolution		
Amplitude Depth:	0.00% to 100.00%, 0.01% resolution	• • • • • • • • • • •	
	0.00% to 100.00%, 0.01% resolution		
FM (Frequency Modulation)			
Carrier Waveforms:	Sine, Square, Ramp, Arb		
Modulation Source:	Internal/External		
Internal Modulating Waveforms:			aussian Noise, DC, Sinc, Exponential Rise, Exponential Fall, Lorentz, D-Lorentz, Cardiac, User Defined Arbs, PRBS*
Internal Madulating Fraguenau			
Internal Modulating Frequency:	1µHz to 10MHz, 1µHz resolution		
Frequency Deviation:	DC to Fmax/2, 1µHz resolution		
PM (Phase Modulation)			
Carrier Waveforms:	Sine, Square, Ramp, Arb		
Modulation Source:	Internal/External		
Internal Modulating Waveforms:	• • • • • • • • • • • • • • • • • • • •	Triangle. G	aussian Noise, DC, Sinc, Exponential Rise, Exponential Fall,
			Lorentz, D-Lorentz, Cardiac and User Defined Arbs, PRBS*
Internal Modulating Frequency:	1μHz to 10MHz, 1μHz resolution	•••••	
Phase Deviation:	-360.000 to +360.000 degrees, 0.001 degree	resolution	
		contion	
ASK (Amplitude Shift Keying)			
Carrier Waveforms:	Sine, Square, Ramp, Pulse, Noise, Arb, PRBS*	(max. cari	rier frequency 50MHz)
Source:	Internal/External (via TRIG IN)		
Internal Modulation:	2mHz to 10MHz (50% duty cycle square)		
FSK (Frequency Shift Keving)			
	Sine Square Ramp Arb		
Carrier Waveforms:	Sine, Square, Ramp, Arb		1 250407
FSK (Frequency Shift Keying) Carrier Waveforms: Max. Carrier Frequency	50MHz		25MHz
Carrier Waveforms:	•••••••••••••••••••••••••••••••••••••••		25MHz

Technical Specifications - TGF3162 | TGF3082 (continued)

	diustable in 10ns steps 11 digit resolution. Each	channel ha	s its own trigger generator. Channel 1 trigger is available for exterr
TRIGGER GENERATOR	TGF3162	1	TGF3082 (where different)
Sweep Trigger Source:	The sweep may be free run or triggered fro Externally from TRIG IN input or remote int		wing sources: Internal from keyboard or trigger generator.
Sweep Time:	1μs to 500s (9 digit resolution).		
Sweep Range:	From 1µHz to Fmax. Phase continuous. Ind	ependent se	etting of the start and stop frequency.
weep Mode: weep Direction:	Linear or logarithmic, triggered or continuc	us.	
Carrier Waveforms:	ed for both standard and arbitrary waveforms. Sine, Square, Ramp, Arb		
SWEEP			
Gate Start/Stop Phase:	-360.000 to +360.000 degrees, 0.001 degre	e resolution	n. Phase offset cannot be set for Noise and PRBS waveforms.
rigger Repetition Rate: ate Signal Source:	2mHz to 50MHz internal, dc to 1MHz ext. Internal from keyboard or trigger generator		
Maximum Carrier Frequency: subject to carrier waveform	50MHz (finite cycles), Fmax(infinite),		25MHz (finite cycles), Fmax(infinite)
Carrier Waveforms:	Sine, Square, Ramp, Pulse, Noise, Arb, PRB	S*	
Waveform will run while the Gate sigr	nal is true and stop while false.		
GATED	TGF3162		TGF3082 (where different)
Trigger Start/Stop Phase:	• • • • • • • • • • • • • • • • • • • •		n. Phase offset cannot be set for Noise and PRBS waveforms.
Trigger Signal Source:	Internal from keyboard or trigger generator	r, External fr	
Trigger Repetition Rate:	2mHz to 50MHz internal, dc to 1MHz ext.		2mHz to 25MHz internal, dc to 1MHz external.
Noise: Number of Cycles:	1 to 2147483647 and infinite.		nt. Allows generating same random noise sequence.
PRBS:	A fixed number of bits, specified as number		•••••••••••••••••••••••••••••••••••••••
Sine, Square, Ramp, Pulse, Arb:	A fixed number of cycles, specified as number		
(subject to carrier waveform			
Maximum Carrier Frequency:	50MHz (finite cycles), Fmax(infinite),		25MHz (finite cycles), Fmax(infinite)
Carrier Waveforms:	Sine, Square, Ramp, Pulse, Noise, Arb, PRB	 S*	
TRIGGERED BURST	TGF3162 will produce one burst of the waveform.		TGF3082 (where different)
	e Modulations section refer only to the TGF3162	or IGF3082	•
Ratio:	0% to 100%, 0.01% resolution	TOPTO	
Internal Modulating Frequency:	1μHz to 10MHz, 1μHz resolution		
	Logarithmic Rise, Logarithmic Fall, Haversin PRBS*	e, Gaussian	, Lorentz, D-Lorentz, Cardiac, and User Defined Arbs
Internal Modulating Waveforms:			Gaussian Noise, DC, Sinc, Exponential Rise, Exponential Fall,
Modulation Source:	Internal/External		
Max. Carrier Frequency	50MHz	- - 	25MHz
SUM (Additive Modulation) Carrier Waveforms:	Sine, Square, Ramp, Pulse, Noise, Arb, PRB	5*	
	0% to 100% of pulse width, 0.01% resolution	/11	
Internal Modulating Frequency: Pulse Width Deviation:	1µHz to 10MHz, 1µHz resolution 0% to 100% of pulse width, 0.01% resolutic		
		e, Gaussian	, Lorentz, D-Lorentz, Cardiac and User Defined Arbs, PRBS*
Internal Modulating Waveforms:			Gaussian Noise, DC, Sinc, Exponential Rise, Exponential Fall,
Modulation Source:	Internal/External		
PWM (Pulse Width Modulation) Carrier Waveforms:	Pulse		
Internal Modulation:	2mHz to 10MHz (50% duty cycle square)		
Modulation Source:	Internal/External (via TRIG IN)		

FREQUENCY COUNTER/TIMER			
External signals can be measured using	the TRIG IN or RFF IN Sockets		
Functions:	Frequency, Period, Positive Wid	h Nogativo Width Du	ty Cyclo
	• • • • • • • • • • • • • • • • • • • •		
Frequency Range:	AC coupled 3Hz to >125MHz DC coupled 100mHz to >125MH	47	
	• • • • • • • • • • • • • • • • • • • •		
Input Source:	AC coupled REF IN / COUNT (AC DC coupled TRIG IN / COUNT (D	,	
		C) IN SUCKEL	
Frequency Resolutuion:	Up to 7 digits displayed		
Measurement Time:	Automatic		
Input Range and Sensitivity:			5Vpp (>50MHz), maximum input ±10V
	DC coupled Threshold typically	1.2V; sensitivity 100m	Vpp (≤50MHz), 250mVpp (>50MHz); maximum input +5V/-1V.
Input Hysteresis Voltage:	10mV		
Accuracy:	±1 digit ± timebase accuracy.		
INTER-CHANNEL OPERATIONS			
Inter Channel Characteristics			
Relative phase:	-360.000 to 360.000 degrees. 0.	001 degree resolution	(Phase offset cannot be set for Noise)
Channel to channel Skew (typical):	• • • • • • • • • • • • • • • • • • • •		
	<1ns (when performing identica		
Crosstalk (typical):	<-80db		
Channel Tracking	Standard on TGF3162	I	Optional on TGF3082 with GU3082
Independent (Off):	The channels are independent of	of each other.	
Equal:	The two channels are identical a	nd behave identically.	
	Standard on TGF3162		Optional on TGE2002 with CU2002
Channel Coupling			Optional on TGF3082 with GU3082
Frequency coupling:	The frequencies of the two char Changing the frequency of one		equencies of both channels
Amplitude (and DC Office)			
Amplitude (and DC Offset) coupling:	Amplitude (and DC offset) of the the amplitude and offset of both		coupled. Changing the amplitude and offset on one channel changes
Output aqualiz -			
Output coupling:	Output On/Off can be coupled.	switching the output C	Dn/Off on one channel switches the output On/Off of both channels.
OUTPUTS			
MAIN OUTPUTS			
Output Impedance:	50Ω		
Amplitude:	≤ 50MHz 20mV to 20Vp-p op	en circuit (10mV to 10)	√p-p into 50Ω)
	to 2010 b ob		
	≤ 125MHz 20mV to 10Vp-p op	en circuit (10mV to 5V)	p-p into 50Ω)
	≤ 125MHz 20mV to 10Vp-p op ≤ 160MHz 20mV to 5Vp-p oper	(
	≤ 160MHz 20mV to 5Vp-p oper	n circuit (10mV to 2.5V	
Amplitude Accuracy:	≤ 160MHz 20mV to 5Vp-p oper	n circuit (10mV to 2.5V	/p-p into 50Ω)
	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified ope	n circuit (10mV to 2.5v n circuit (hi Z) or into a	/p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p.
	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ±	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω.
	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ±	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω.
DC Offset Range:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ±	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω.
DC Offset Range: DC Offset Accuracy:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV.	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV.3 digits or 1mV for both Amplitude	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset.	p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul	rp-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output 0 following. Alternatively, user can choose	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre	rp-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave wave wave wave wave wave wave wav	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at t	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at t wave at the waveform	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. i frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± signal peak limited to de and DC Offset. 2 socket. Sync is a mul ed, to output the curre vith 50% duty cycle at t wave at the waveform square wave with 50%	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. a frequency. a duty cycle at the waveform frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output 0 following. Alternatively, user can choose	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. a frequency. a duty cycle at the waveform frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	<pre>≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 500 < 50MHz ±10V. DC offset plus < 125MHz ±5V. DC offset plus < 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine < 50MHz: A square wave w Sine >50MHz < 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with</pre>	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul- ed, to output the curre ith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the noise.	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. i frequency. 6 duty cycle at the waveform frequency. a beginning of the sequence
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	<pre>≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 500 < 50MHz ±10V. DC offset plus < 125MHz ±5V. DC offset plus < 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine < 50MHz < 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A square AM/FM/PM/SUM/PWM: A square</pre>	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± de and DC Offset. 2 socket. Sync is a mul- ed, to output the curre ith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. a frequency. a duty cycle at the waveform frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	<pre>≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 500 < 50MHz ±10V. DC offset plus < 125MHz ±5V. DC offset plus < 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine < 50MHz < 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A square AM/FM/PM/SUM/PWM: A square</pre>	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± a signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre vith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ti function output which is automatically selected to be any of the ently used trigger signal or turn it off. the waveform frequency. a frequency. 6 duty cycle at the waveform frequency. a beginning of the sequence y cycle referenced to the internal modulation waveform when noced to the carrier waveform when modulation source is external.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squa modulation source is internal, o No sync is associated with Noise	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre vith 50% duty cycle at the wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ±2.5V from 50Ω. ±4.5V from 50Q. ±4.5V from 50Q.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 500 < 50MHz ±10V. DC offset plus < 125MHz ±5V. DC offset plus < 160MHz ±2.5V. DC offset plus 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine < 50MHz < 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squa modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced	n circuit (10mV to 2.5v n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± de and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus 3 digits or 1mV for both Amplitu Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A square modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier frequence	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at t wave at the waveform square wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus 3 digits or 1mV for both Amplitu Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A square modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave referenced	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ide and DC Offset. 2 socket. Sync is a mul ed, to output the curre ith 50% duty cycle at the wave at the waveform square wave with 50% dut r a square wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync: Modulation Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus 3 digits or 1mV for both Amplitu Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A square modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave references low when carrier phase is the output set the state of th	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± s signal peak limited to de and DC Offset. 2 socket. Sync is a mul- ed, to output the curre vith 50% duty cycle at t wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The utput phase for positiv	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync: Modulation Sync: Sweep Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squ modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave referenced low when carrier phase is the out A square wave that is a TTL high	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± as signal peak limited to read and DC Offset. 2 socket. Sync is a mul- ed, to output the curre vith 50% duty cycle at the wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger for positive from the beginning of	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync: Modulation Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squ modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave referencee low when carrier phase is the ou A square wave that is a TTL high Internal Trigger: A square wave	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± signal peak limited to ± signal peak limited to ± ade and DC Offset. 2 socket. Sync is a mul- ed, to output the curre- vith 50% duty cycle at to wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The structure for positive from the beginning of with 50% duty cycle at	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±4.50 frequency. ±4.50 frequency is the output frequency uency for positive slope and vice versa for negative slope. ±4.50 frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync: Modulation Sync: Sweep Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squ modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave referenced low when carrier phase is the ou A square wave that is a TTL high Internal Trigger: A square wave External Trigger: A square wave	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± signal peak limited to ± signal peak limited to ± ade and DC Offset. 2 socket. Sync is a mul- ed, to output the curre- vith 50% duty cycle at the wave at the waveform square wave with 50% is 1 bit rate wide at the noise. are wave with 50% dut r a square wave refere and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The source of the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±4.50 frequency. ±4.50 frequency is the output frequency uency for positive slope and vice versa for negative slope. ±100 from the hop phase is the output phase and TTL e slope and vice versa for negative slope. ±100 frequency. ±100 frequency frequency. ±100 frequency.
DC Offset Range: DC Offset Accuracy: Resolution: SYNC OUTPUT Channel 2 can be configured to output (following. Alternatively, user can choose Carrier Waveform Sync: Modulation Sync: Sweep Sync:	≤ 160MHz 20mV to 5Vp-p oper Amplitude can be specified oper 1.5% ±5mV at 1kHz into 50Ω ≤ 50MHz ±10V. DC offset plus ≤ 125MHz ±5V. DC offset plus ≤ 160MHz ±2.5V. DC offset plus Typically 1% ±50mV. 3 digits or 1mV for both Amplitu Channel 1 sync from its MAIN OUT e Sync to always be carrier reference Sine ≤ 50MHz: A square wave w Sine >50MHz ≤ 160MHz: A sine Square / Ramp / Pulse / Arbs: A Pattern: A positive pulse which Noise: No sync associated with AM/FM/PM/SUM/PWM: A squ modulation source is internal, o No sync is associated with Noise FSK: A square wave referenced and TTL low when carrier freque BPSK: A square wave referenced low when carrier phase is the ou A square wave that is a TTL high Internal Trigger: A square wave External Trigger: A square wave	n circuit (10mV to 2.5V n circuit (hi Z) or into a signal peak limited to ignal peak limited to ± s signal peak limited to ± de and DC Offset. 2 socket. Sync is a mul- ed, to output the curre- vith 50% duty cycle at the wave at the waveform square wave with 50% dut r a square wave with 50% dut r a square wave refere- and DC waveforms as to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output freq d to the trigger rate. The ency is the output gositiv- from the beginning of with 50% duty cycle at with same duty cycle	 p-p into 50Ω) n assumed load of 1Ω to 10kΩ in Vp-p. ±10V from 50Ω. 5V from 50Ω. ±2.5V from 50Ω. ±4.50 frequency. ±4.50 frequency is the output frequency uency for positive slope and vice versa for negative slope. ±4.50 frequency.

REF CLOCK OUTPUT	
Buffered version of the 10MHz cloc Output Level:	k currently in use (internal or external) Nominally 3V logic level from 50Ω
INPUTS	
TRIG IN / COUNT (DC) IN	
For ASK, FSK, BPSK, triggered sweep	o, gated burst, triggered burst and DC coupled external frequency measurement
Frequency Range:	DC- 1MHz for Trigger, 100mHz to >125MHz for Counter
Signal Range:	Threshold typically 1.2V; sensitivity 100mVpp (≤50MHz), 250mVpp (>50MHz); maximum input +5V /-1V.
Minimum Trigger Pulse Width:	50ns
	Selectable as high/rising edge or low/falling edge.
Trigger Polarity:	
Input Impedance:	10kΩ
EXTERNAL MODULATION INPUT	
For AM, FM, PM, SUM and PWM	
Voltage Range:	± 2.5V full scale
Input Impedance:	5kΩ typical
Bandwidth:	DC to 5MHz
REF IN / COUNT (AC) IN	
Input for an external 10MHz refere	nce clock and AC coupled external frequency measurement
Voltage Range:	100mVpp – 5Vpp (≤50MHz), 250mVpp – 5Vpp (>50MHz)
Maximum Voltage:	+10V
Minimum Voltage:	-10V
INTERFACES	
	are available through LAN, USB and optional GPIB interfaces.
LAN Interface	Ethernet 100/10base – T hardware connection. 1.4 LXI Core 2011
USB Interface	Standard USB 2.0 hardware connection. Implemented as virtual-COM port.
USB Flash Drive	
• • • • • • • • • • • • • • • • • • • •	For waveform and set-up storage/recall.
GPIB (optional)	Conforming with IEEE488.1 and IEEE488.2
GENERAL	
Display:	256 x 112 pixel monochrome graphics display. White LED backlight with adjustable brightness and contrast. Black-on-white or inverse modes.
Data Entry:	Keyboard selection of mode, waveform etc.; value entry direct by numeric keys or by rotary control.
Stored Settings:	Up to 9 complete instrument set-ups may be stored and recalled from non-volatile memory.
Size:	Bench Top: 97mm height; 250mm width; 295mm long
	Rack mount: 86.5mm (2U) height; 213.5mm (½-rack) width; 269mm long
Weight:	3.2kg
Power:	100-240VAC ±10% 50/60Hz; 100-120VAC ±10% 400Hz; 60VA max. Installation Category II.
Operating Range:	+5°C to 40°C, 20-80% RH.
Storage Range:	-20°C to + 60°C.
Environmental:	Indoor use at altitudes up to 2000m. Pollution Degree 2.
Options:	19 inch rack mounting kit.
Safety & EMC:	Complies with EN61010-1 & EN61326-1. ion of Conformity for this instrument via http://www.aimtti.com/support (serial no. needed).
OPTIONS	
	User installable CDIP (IEEE 499) interface module
GPIB Interface TG-GPIB:	User installable GPIB (IEEE-488) interface module.
Features Upgrade GU3082	User installable software enhancement that adds Inter-channel functions, PRBS generator, Harmonics generator and Sum modulation to the TGF3082.

TGF3000 Series - Ordering Information

Product Reference	
TGF3162	160MHz two channel generator 90V to 264V AC input, supplied with: AC power cable appropriate to country of sale Printed Quick Start guide in English, French, German, Italian and Spanish Full Operating Manual as PDF (English) on CD Waveform Manager Plus software on CD Large number of pre-built arbitrary waveform on CD IVI driver, combined LabView/LabWindows CVI driver, and USB driver on CD
TGF3082	80MHz two channel generator 90V to 264V AC input, supplied with: AC power cable appropriate to country of sale Printed Quick Start guide in English, French, German, Italian and Spanish Full Operating Manual as PDF (English) on CD Waveform Manager Plus software on CD Large number of pre-built arbitrary waveform on CD IVI driver, combined LabView/LabWindows CVI driver, and USB driver on CD
TG-GPIB	User installable GPIB interface module
GU3082	User installable features upgrade for TGF3082 only
RM200A	2U high rack mount kit for one or two instruments

OTHER WAVEFORM GENERATORS FROM AIM-TTI

The TGF3000 Series is just part of an extensive range of generators from Aim-TTi ranging from simple analog function generators through to four channel true variable clock arbitrary generators. RF signal generators are also available.

Function Generators

TG300 Series	3MHz analog function generators with digital display of frequency and level
TG1006	10MHz DDS function generator with sweep, modulation and counter
TG2000 Series	10MHz/20MHz DDS function generators with full digital control

Arbitrary Function Generators

TGxx11/12A 25MHz/50MHz generators with one and two channel and extensive features

Pulse Generators

- TGP110 10MHz analog pulse generator
- TGP3100 Series 25MHz/50MHz digital pulse and universal generators with one or two channel and jitter free aysynchronous operation

True Arbitrary Generators

TGA1240 Series	40MHz variable clock Arbs with 1, 2 or 4 channels
TGA12100 Series	100MHz variable clock Arbs with 1, 2 or 4 channels
TGA12200 Series	(coming 2018) 2 or 4 channel true Arbs with up to 500MS/s clock
	rate and very extensive features

Available from:			

Designed and built in Europe by:

Thurlby Thandar Instruments Ltd. Glebe Road, Huntingdon, Cambridgeshire. PE29 7DR United Kingdom Tel: +44 (0)1480 412451 Fax: +44 (0)1480 450409 Email: info@aimtti.com Web: www.aimtti.com