
…. Introduction

This is a CAN to UART and USB 1.0 communication module that is compatible with both 3.3V
and 5V. It supports the CAN 2.0 protocol and incorporates the SLCAN command, eliminating
the need for you to concern yourself with the complexities of the CAN protocol. By simply
sending AT commands, you can engage in CAN data transmission and configure its
functionalities.

This module not only provides a UART interface but also integrates a USB interface, eliminating
the need for cumbersome conversions between USB and UART during data debugging.
Connecting it to your computer via USB allows for convenient data debugging through a serial
assistant. This feature proves particularly handy when deploying the module on-site for
debugging purposes.

The module offers a configurable CAN baud rate range of 25K-1Mbps, supporting a maximum
rate of 2 milliseconds per transmission and ensuring the delivery of 500 data packets per
second without any loss. Its stable and reliable communication capabilities significantly reduce
the likelihood of errors in your project and streamline the project debugging process.

Additionally, the module is equipped with data communication indicators and a 120Ω resistor
jumper. These design details serve to enhance the efficiency of your project development and
validation.

2. Features

• Supports CAN 2.0.

• Incorporates SLCAN protocol commands, ensuring user-friendly operation with no need
to focus on CAN protocol intricacies.

• Enables CAN baud rate configuration ranging from 25K to 1Mbps, guaranteeing the
delivery of 500 data packets per second without any loss.

• Integrates a USB interface, eliminating the requirement for additional USB-to-UART
connections and providing convenient usability.

• Compatible with both 3.3V and 5V voltage levels and power supply.

• Configuration parameters can be saved even when power is disconnected.

3. Application

• Intended for communication among robotics and intelligent vehicles enthusiasts.

• Ideal for research and development engineers, as well as small-scale development
companies, for learning, product testing, development, and integration purposes.

• Illumination control system for small vehicles.

4.Terminology Description

CAN

This is an ISO internationally standardized serial communication protocol.

The CAN network is comprised of CAN nodes and a CAN bus, possessing characteristics such
as strong communication real-time performance, high reliability, multi-master operation, error
detection, and fault confinement. Its bus protocol has become the standard for automotive
computer control systems and embedded industrial control local area networks.

The CAN bus is a distributed control bus that utilizes differential voltage to transmit data,
consisting of two signal lines: CAN_H and CAN_L. The bus has two logical levels: recessive level
(logic 1) and dominant level (logic 0). When the voltage difference between CAN_H and CAN_L
is less than 0.5V, it represents logic value 1, the recessive level. When the voltage difference
between CAN_H and CAN_L is greater than 0.9V, it represents logic value 0, the dominant
level. This differential transmission method enhances signal immunity to interference and
suppresses interference from common-mode signals.

Taking the example of a high-speed, short-distance closed-loop network based on the ISO
11898 standard, the maximum communication distance of the CAN bus can reach up to 40m,
with a maximum communication speed of 1Mbps. Additionally, a 120Ω termination resistor is
required at the ends of the CAN bus to match the impedance and reduce echo reflections.

Data Frames

Communication on the CAN bus is conducted in the form of "frames." A data frame, as the
name suggests, is a frame used to transmit data and serves as a carrier for the data that the
transmitting node wishes to deliver to the receiving node.

The frame structure of a data frame consists of seven segments: Start of Frame, Arbitration,
Control, Data, CRC, ACK, and End of Frame. Based on the length of the ID code in the
arbitration segment, data frames are categorized into Standard Frames and Extended Frames.
Standard Frames have an 11-bit binary ID, which translates to 3 hex digits, resulting in an ID
range of 000-7FF. Extended Frames have a 29-bit ID, which translates to 8 hex digits, providing

an ID range of 00000000-1FFFFFFF. The frame ID determines the priority of data frame
transmission, with lower ID values indicating higher priority.

The Control segment consists of reserved bits r1 and r0, along with the Data Length Code

(DLC) segment. The DLC segment is the most important, comprising 4 data bits used to
indicate the number of bytes in the data segment of the message, ranging from 0 to 8.

The Data segment consists of the transmitted data within the data frame, determined by the
DLC, and each byte contains 8 bits.

The CRC segment includes the cyclic redundancy check sequence (CRC) and the delimiter
(DEL), with the former used to verify the correctness of the transmission and the latter
indicating the end of the CRC sequence.

The ACK segment comprises the acknowledge (ACK) bit and the delimiter (DEL), confirming
the successful reception.

5. Functional diagram

Functional name
Pin
name

Functional/pin description

UART interface UART interface（Interface level3.3V、5V）

T RX，Data reception port

R TX，Data transmission port

- Power negative terminal

+ Power positive terminal（3.3V~5V）

CAN interface CANBUS interface

H
CAN_H，Can only be in a high-level or floating
state

Functional name
Pin
name

Functional/pin description

L CAN_L，Can only be in a low-level or floating state

120Ω resistor switching
jumper

Disconnect or connect 120Ω termination resistor

OFF Disconnect 120Ω resistor

ON
When the CAN device acts as a terminal device, the
120Ω resistor needs to be connected

USB debugging
interface

USB device interface, used for communication,
testing, or parameter configuration with a
computer

CAN communication
indicator light

LED flashes during CAN communication

6. Specification

• Operating voltage: 3.3V - 5V

• Operating current: 65mA

• AT command protocol: SLCAN

• USB interface: USB serial device, requiring no communication baud rate configuration.

• UART interface voltage levels: 3.3V, 5V

• UART baud rate: 115200Bps (default configuration)

• Optional baud rates for CAN communication:
◦ 25kbits/s

◦ 50kbits/s

◦ 100kbits/s

◦ 125kbits/s

◦ 250kbits/s

◦ 500kbits/s (default configuration)

◦ 800kbits/s

◦ 1Mbits/s

7. Dimension

8.Initial use: AT command testing

The CAN to TTL module is designed with a USB interface, allowing you to directly connect it to
your computer for command testing. No additional USB to UART converter is required. It
functions as a USB device rather than a UART serial port, so you don't need to worry about the
serial port baud rate. You can communicate at any baud rate of your choice (such as 9600 or
115200) with ease.

Connect the CAN to TTL module to your computer's USB port using a TYPE-C data cable. Once
connected, open the serial assistant. You will see a USB serial device listed in the serial port
options. Select that device and click on "OpenCom" to establish the serial connection, as
shown in the diagram.

Now, let's try entering the command h\r to retrieve the help information. Here's how you can
do it:

Step 1: Enter "h\r" or simply "h" (if "AddCrLf" is not selected, you need to enter "h\r") in the
command area.

Step 2: If you only enter "h," make sure to check "AddCrLf."

Step 3: Click on "SEND" to send the command "h."

Step 4: After sending, the data window will display the received help information, including all
the commands and the current CAN baud rate details.

9.Detailed explanation of AT command

This module adopts the SLCAN protocol, integrating it into the MCU. Serial commands can be
used to transmit data or make corresponding configurations. Additionally, communication
with a PC supporting the SLCAN protocol is also possible.

By utilizing the SLCAN protocol, you can spare yourself from the complexities of the
underlying CAN protocol. Achieving CAN communication is as simple as sending serial
commands. Below, we will delve into the purposes and usage of each instruction within the
SLCAN protocol.

Note: AT commands are case-sensitive.

9.1 Enable or disable CAN communication:

O = Activate CAN communication

C = Deactivate CAN communication

Command description: Use the commands "O" and "C" to enable or disable CAN
communication, following the same method as before. If "HEXShow" is selected, the system
will respond with 0D, indicating successful command execution. A response of 07 indicates an
incorrect instruction.

9.2 Sending CAN data:

t = Send 11-bit standard data frame

r = Send 11-bit standard RTR data frame

T = Send 29-bit extended data frame

R = Send 29-bit extended RTR data frame

Z0 = Data frame without timestamp

Z1 = Data frame with timestamp

Command description:

The SLCAN protocol allows for the transmission of 11-bit standard data frames and 29-bit
extended data frames. The only difference between CAN standard data frames and extended
data frames is the length of the frame ID, enabling the connection of more CAN nodes.

When sending data, adhere to the frame length specifications in the SLCAN protocol. The
ASCII representation of an SLCAN frame is as follows:

type: Indicates the type of data frame to be sent.

id: For standard data frames, the ID is represented by 3 bytes of ASCII Hex. For extended data
frames, it is represented by 8 bytes of ASCII Hex.

dlc: A single-byte number (0-8) that describes the number of hexadecimal data to be sent.

data: The data to be sent in ASCII representation of hexadecimal, with a quantity
corresponding to dlc.

Example:

Send 11-bit standard data frame: t123178 - CAN ID: 0x123, CAN DLC: 1, Data: 0x78

Send 11-bit standard data frame: t4563112233 - CAN ID: 0x456, CAN DLC: 3, Data: 0x11 0x22
0x33

Send 29-bit extended data frame: T12ABCDEF2AA55 - Extended CAN ID: 0x12ABCDEF, CAN
DLC: 2, Data: 0xAA 0x55

Send 11-bit standard RTR data frame: r1230 - CAN ID: 0x123, CAN DLC: 0, No data, Remote
Transmission Request.

9.3 CAN Communication Rate Setting:

S1 = Set CAN communication rate to 25 kbits/s

S2 = Set CAN communication rate to 50 kbits/s

S3 = Set CAN communication rate to 100 kbits/s

S4 = Set CAN communication rate to 125 kbits/s

S5 = Set CAN communication rate to 250 kbits/s

S6 = Set CAN communication rate to 500 kbits/s (default configuration)

S7 = Set CAN communication rate to 800 kbits/s

S8 = Set CAN communication rate to 1 Mbits/s

Command description:

The S1 to S8 commands are used to set the baud rate for CAN communication. In a CAN bus,
all nodes must have consistent baud rates to communicate with each other.

Using the "h" command, you can query the current module's baud rate and the status of CAN
communication being open or closed. Note that this sets the communication baud rate for the
CAN bus, not the UART baud rate. The default baud rate for the UART interface is 115200.

9.4 Information Retrieval:

V = Get current version

h = Get help information

Command description:

Send "V" to retrieve firmware version information. After a successful transmission, the
response will contain the version number. Send "h" to get help information, which will provide
instructions for all commands as well as the current CAN baud rate and status.

10. CAN Communication Testing

10.1 Communication between two modules.

This example will demonstrate the communication between two CAN-to-TTL modules. One
module will send the data "t123122," while the other module will receive the data and display
it on the serial monitor as "t123122."

Hardware Preparation:

• Two CAN-to-TTL modules ×2

• Type-C USB cables ×2

Connection Diagram:

Open two serial assistants and select the corresponding serial devices for the two CAN-to-TTL
modules, as shown in the diagram.

In both serial assistants, send the command "O" to activate CAN communication, followed by
the command "S6" to set the CAN baud rate to 500 kbits/s for both modules.

In the left serial assistant, send the command "t123122."

In the right serial assistant window, the data "t123122" will be received.

10.2 Tutorial for Using FireBeetle 2 ESP32-E as the Main Controller

This tutorial will demonstrate how to send data "t11123333" to the CAN bus through the UART
interface of ESP32-E. Another CAN-to-TTL module will receive the data and display it on the
serial monitor.

Hardware Preparation:

• CAN TO UART/USB Module ×2

• FireBeetle_Board_ESP32_E (https://www.dfrobot.com/product-2195.html) (SKU:DFR0654)
×1

• Type-C&Micro 2-in-1 USB Cable (https://www.dfrobot.com/product-2078.html)
（SKU：FIT0668）×2

Connection Diagram:

https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2195.html
https://www.dfrobot.com/product-2078.html
https://www.dfrobot.com/product-2078.html
https://www.dfrobot.com/product-2078.html
https://www.dfrobot.com/product-2078.html
https://www.dfrobot.com/product-2078.html
https://www.dfrobot.com/product-2078.html

Example program

void setup()

{

 Serial1.begin(115200, SERIAL_8N1, /*rx =*/D3, /*tx =*/D2);

delay(10); //Give a delay to ensure that the previous setup instruction is completed

 Serial1.println("S3\r"); //Set the CAN baud rate to 100kbits/s

//delay(10); //Give a delay to ensure that the previous setup instruction is completed

 Serial1.println("O\r"); //Turn on CAN communication

}

void loop()

{

 Serial1.println("t11123333\r");

delay(1000);

Operational Steps:

}

Connect the module to the FireBeetle Board ESP32-E following the wiring diagram shown
above.

Open the Arduino IDE and upload the code to the FireBeetle Board ESP32-E.

Open another serial assistant and select the corresponding serial device for the module. In the
serial assistant, send "S3" to set the CAN baud rate to 100 kbits/s. Then, send the command
"O" to activate CAN communication. You will then be able to receive the data "t11123333" in
the serial assistant.

Note: The baud rate of the module's UART interface needs to match the baud rate selected
in the serial assistant.

Demonstration of the Running Results

