Introduction

TFmini-i LiDAR is an industrial-grade medium-range distance sensor. Its maximum detection range can reach up to 12m and it has an adjustable frame rate with a maximum of 1KHz. It has a PC/ABS/PMMA enclosure with IP65 water and dust resistance. It supports a wide range of input voltages (7-30V) with reverse protection to protect the internal circuit. RS485 communication interface, standard Modbus protocol and multiple built-in operating modes are included for the users to change their parameters and configurations to meet different applications. The TFmini-i LiDAR can be used on the Arduino UNO R3 through the TTL to RS485 Shield, and it can also be used on the Raspberry Pi through the USB to RS485 module. Those two ways provided by DFRobot can make TFmini-i LiDAR simpler to be used.

How does TFmini-i LiDAR work?

TFmini-i is a single point LiDAR, which is based on Pulse Time of Flight (PTOF). It adopts an incoherent energy receiving mode, and the detection is mainly based on Pulse counting. TFmini-i emits a narrow pulse laser, which is collimated by the transmitting lens to form a collimated light, which enters the receiving system after being reflected by the measured target and is focused on the APD detector by the receiving lens. The time between the transmitted signal and the received signal is calculated through the circuit amplification and filtering, and the distance between TFmini-i and the measured target can be calculated through the speed of light.

геацие

- Wide range of input voltages (7-30V) with reverse protection
- RS485 interface communication
- Adjustable frame rate with a maximum of 1KHz
- Medium range detection (up to 12m)
- IP65 protection for industrial application
- Compatible with Arduino UNO R3 and Raspberry Pi

Application

- Detection of vehicle and pedestrian
- Vehicle collision avoidance and safety warning systems
- UAV assisted takeoff and landing
- Altimeter

Specification

Parameters		Details	
		0.1-12m@90% reflectivity	
		0.1-7m@10% reflectivity	
	Operating Range	0.1-12m@90% reflectivity&70Klux	
		0.1-7m@10% reflectivity&70Klux	
	Accuracy	±6cm (0.1~6m), ±1% (6~12m)	
	Distance resolution	1cm	
Product	Frame rate	100Hz	
Performance	Ambient light immunity	70Klux	
	Operating temperature	-20~60°C	
	Enclosure rating	IP65	
	Light source	VCSEL	
	Central wavelength	850nm	
Optical Parameters	Photobiological safety	Class1 (EN60825)	
i didinotoro	FOV (Field of view)	2°	
	Supply voltage	7~30V	
F loor de st	Average current	≤65mA@12V	
Parameters	Power consumption	≤0.8W@12V	
Falameters	peak current	100mA	
	Communication interface	RS-485	
	Dimensions	50mm*34mm*41mm (L*W*H)	
	Enclosure material	PC/ABS/PMMA	
Others	Storage temperature	-30~75°C	
	Weight	Weight 52g	
	Cable length	70cm	

Board Overview

Size Diagram

Pinout Diagram

Color	Pin	Function
Red	VCC	7-30V power supply
White	RS485-B	RS485-B bus
Green	RS485-A	RS485-A bus
N/A	/	/
Blue	UART-RXD	UART receive (debug)
Brown	UART_TXD	UART transport (debug)
Black	GND	Ground

NOTE: Do not mix UART cable with RS485 wire, otherwise it will cause damage to LiDAR MCU.

Tutorial

Requirements

- Hardware
 - TFmini-i LiDAR x1
 - DFRduino UNO R3 x1
 - Raspberry Pi x1
 - USB to RS485 Module (https://www.dfrobot.com/product-2189.html) x1
 - RS485 Shield for Arduino (https://www.dfrobot.com/product-1024.html) x1
- Software
 - Arduino IDE (https://www.arduino.cc/en/Main/Software)

On the Arduino

Turn the switch of the expansion board to the OFF first, burn codes into the board, then turn it to the ON. Select the serial port baud rate 115200.

NOTE:Do not mix UART cable with RS485 wire, otherwise it will cause damage to LiDAR MCU.

Connection Diagram

Sample Code

```
uint8_t Com[8] = {0x01, 0x03, 0x00, 0x00, 0x00, 0x01, 0x84, 0x0a};
void setup()
{
  Serial.begin(115200); //Initialize the serial ports
}
void loop()
{
  int Distance =readDistance();
  Serial.print("Distance = ");
  Serial.print(Distance);
  Serial.println(" CM");
  delay(500);
}
int readDistance(void)
{
  uint8_t Data[10] = {0};
  uint8_t ch = 0;
  bool flag = 1;
  int Distance = 0;
  while (flag) {
    delay(100);
    Serial.write(Com, 8);
    delay(10);
    if (readN(&ch, 1) == 1) {
      if (ch == 0x01) {
        Data[0] = ch;
        if (readN(&ch, 1) == 1) {
          if (ch == 0x03) {
            Data[1] = ch;
            if (readN(&ch, 1) == 1) {
              if (ch == 0x02) {
                Data[2] = ch;
                if (readN(&Data[3], 4) == 4) {
                  if (CRC16_2(Data, 5) == (Data[5] * 256 + Data[6])) {
                    Distance = Data[3] * 256 + Data[4];
                    //Serial.println(Distance);
                    flag = 0;
                  }
                }
              }
           }
         }
       }
      }
    }
```

```
Serial.flush();
  }
  return Distance;
}
uint8_t readN(uint8_t *buf, size_t len)
{
  size_t offset = 0, left = len;
  int16_t Tineout = 500;
  uint8_t *buffer = buf;
  long curr = millis();
  while (left) {
    if (Serial.available()) {
      buffer[offset] = Serial.read();
      offset++;
      left--;
    }
    if (millis() - curr > Tineout) {
      break;
    }
  }
  return offset;
}
unsigned int CRC16_2(unsigned char *buf, int len)
{
  unsigned int crc = 0xFFFF;
  for (int pos = 0; pos < len; pos++)</pre>
  {
    crc ^= (unsigned int)buf[pos];
    for (int i = 8; i != 0; i--)
    {
      if ((crc & 0x0001) != 0)
      {
        crc >>= 1;
        crc ^= 0xA001;
      }
      else
      {
        crc >>= 1;
      }
    }
  }
  crc = ((crc & 0x00ff) << 8) | ((crc & 0xff00) >> 8);
  return crc;
}
```

On the Raspberry Pi

1. Wiring diagram

2. Install wiringpi library

```
cd /tmp
wget https://project-downloads.drogon.net/wiringpi-latest.deb //download wiringpi
sudo dpkg -i wiringpi-latest.deb //install wiringpi library
cd Desktop/ //enter desktop folder
git clone https://github.com/DFRobotdl/TF02-i.git //ownload the sample code and
cd TF02-i/
```

3. Check USB device

Type in the terminal

sudo ls -l /dev

Find the USB device that has just been connected to the Raspberry Pi (Every time the USB device is connected to the Raspberry Pi, the device port will change, so you need to check the actual port each time you connect the device to the Raspberry Pi).

<pre>#include <string.h></string.h></pre>					
<pre>#include <wiringpi.h></wiringpi.h></pre>					
<pre>#include <wiringserial.h></wiringserial.h></pre>	pi@raspberrypi: ~/Desktop/TFmini-i				
<pre>int recData(unsigned char* buf); unsigned int CRC16_2(unsigned char *buf, int len);</pre>	File Edit Tabs Help crww1 root tty 4, 56 May 7 11:27 tty56 crww1 root tty 4, 57 May 7 11:27 tty57				
int fd;	crww 1 root tty 4, 59 May 7 11:27 tty59 crww 1 root tty 4, 69 May 7 11:27 tty59 crww 1 root tty 4, 60 May 7 11:27 tty60 crww 1 root tty 4, 60 May 7 11:27 tty60				
<pre>unsigned char Data[8] = {0}; int main()</pre>	CrWW 1 root tty 4, 61 May / 11:2/ tty61 crWW 1 root tty 4, 62 May 7 11:27 tty62 crWW 1 root tty 4, 63 May 7 11:27 tty63				
<pre> ={ if ((fd = serialOpen("/dev/ttyUSBO", 115200)) < 0) { fprintf(stderr, "Unable to open serial device; %s\n", } </pre>	crww 1 root tty 4, 7 May 7 11:27 tty7 crww 1 root tty 4, 8 May 7 11:27 tty8 crww 1 root tty 4, 9 May 7 11:27 tty9 crww 1 root tty 20, 64 May 7 11:27 tty9				
return 0;	crw-rw 1 root dialout 188, 0 Jul 21 22:02 ttyUSB0 crw 1 root root 5, 3 May 7 11:27 ttyPintk crw 1 root root 5, 3 May 7 11:27 ttyPintk				
<pre>delay(100); printf("%d cm\n",recData(Data));</pre>	crw 1 root root 10, 223 May 7 11:27 uinput crw-rw-rw- 1 root root 1, 9 May 7 11:27 urandom drwxr-xr-x 3 root root 60 May 7 11:27 v4l				
return 1;	crw-rw 1 root video 243, 0 May 7 11:27 vc-mem crw-rw 1 root video 243, 0 May 7 11:27 vchiq crw-rw 1 root video 247, 0 May 7 11:27 vcio crw-rw 1 root tty 7, 0 May 7 11:27 vcs				
L ₃	crw-rw 1 root tty 7, 1 May 7 11:27 vcs1				

4. Compile and run the sample code

Use the terminal to open the folder where the program is located, compile and run.

```
gcc -Wall -lwiringPi -o TF02 TF02.c
sudo ./TF02
```

Finally, you can see the accurate measured distance value.

				pi@raspberrypi: ~/Desktop/TF02-i	~	^	×
File	e Edit	Tabs	Help				
287	cm						4
287	cm						
288	cm						
287	cm						
288	cm						
288	CM						
287	CM						
288	CM						
288	CM						
207	CIII CIII						
200	Cm Cm						
288	cm						
288	cm						
287	cm						
288	cm						
287	cm						
288	cm						
287	cm						
287	cm						
287	CM						
288	CM						
288	CM						
288	CM						