

RVT28AETNWN00

LCD TFT Datasheet

Rev.1.1

2015-06-24

ITEM	CONTENTS	UNIT
LCD Type	TFT/Transmissive/Normally white	1
Size	2.83	Inch
Viewing Direction	6:00 (without image inversion)	O' Clock
Gray Scale Inversion Direction	12:00	O' Clock
LCM (W × H × D)	50.2 x 69.3 x 2.9	mm3
Active Area (W × H)	43.2 × 57.6	mm2
Dot Pitch (W × H)	0.18 × 0.18	mm2
Number Of Dots	240 x (RGB) × 320	/
Driver IC	ILI9341	/
Backlight Type	4 LEDs	/
Surface Luminance	300	cd/m2
Interface Type	CPU/RGB/SPI	/
Color Depth	65K/262K	1
Pixel Arrangement	RGB Vertical Stripe	/
Surface Treatment	Anti-glare	
Input Voltage	2.8	V
With/Without TSP	Without Touch Panel	/
Weight	18.10	g

Note 1: RoHS compliant

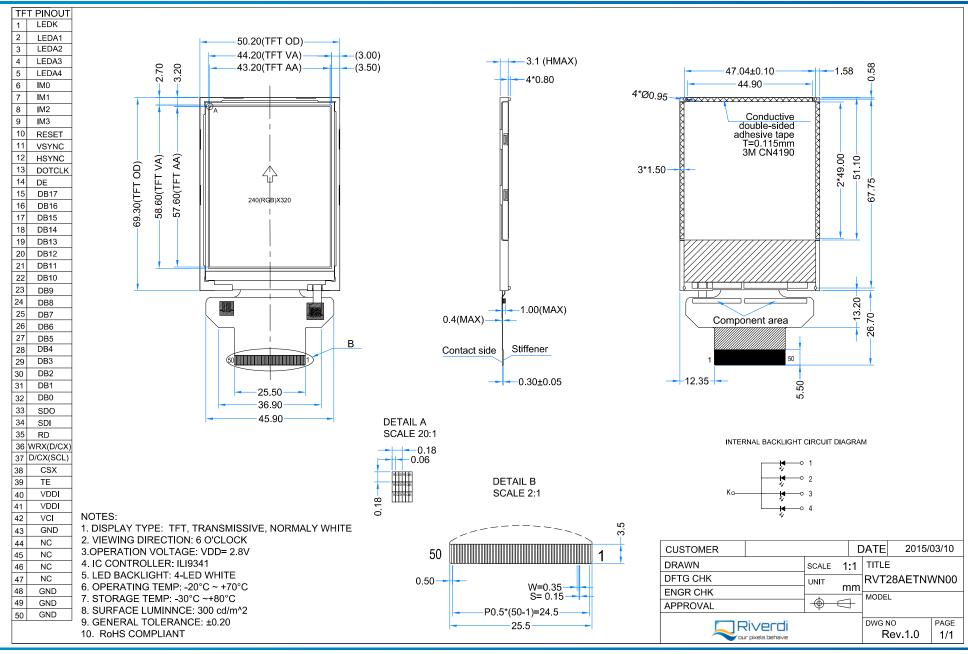
Note 2: LCM weight tolerance: ± 5%.

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REMARKS
1.0	2015-03-13	Initial Release	
1.1	2015-06-24	Update viewing direction	

CONTENTS

R	EVIS	ION RECORD	2
C	ONT	ENTS	2
1	٨	MODULE CLASSIFICATION INFORMATION	3
2	Ν	MODULE DRAWING	4
3	Δ	ABSOLUTE MAXIMUM RATINGS	5
4	E	LECTRICAL CHARACTERISTICS	5
5	В	BACKLIGHT CHARACTERISTICS	5
6	E	LECTRO-OPTICAL CHARACTERISTICS	5
7	II	NTERFACE DESCRIPTION	7
8	L	CD TIMING CHARACTERISTICS	9
	8.1	Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080-I system)	9
	8.2	Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080-II system)	11
	8.3	Display Serial Interface Timing Characteristics (3-line SPI system)	13
	8.4	Display Serial Interface Timing Characteristics (4-line SPI system)	14
	8.5	Parallel 18/16/6-bit RGB Interface Timing Characteristics	15
9	П	NITIAL CODE	16
1	0	RELIABILITY TEST	18
1	1	LEGAL INFORMATION	19



1 MODULE CLASSIFICATION INFORMATION

RV	Т	28	А	E	Т	N	W	Z	00
1.	2.	3.	4.	5.	6.	7.	8.	9.	10.

1.	BRAND	RV – Riverdi			
2	PRODUCT TYPE	T – TFT Standard			
2.	TRODUCTTILE	F – TFT Custom			
		28 – 2.83"			
2	DISPLAY SIZE	35 – 3.5"			
3.	DISI EAT SIZE	43 – 4.3"			
		70 – 7.0"			
4.	MODEL SERIAL NO.	A (A-Z)			
5.	RESOLUTION	E – 240x320 px			
		T – TFT LCD, RGB			
6.	INTERFACE	L – TFT LCD, LVDS			
		C – TFT + Controller			
7	FRAME	N – No Frame			
7.	TIVALAIE	F – Mounting Frame			
8.	BACKLIGHT TYPE	W – LED White			
		N – No Touch Panel			
9.	TOUCH PANEL	R – Resistive Touch Panel			
		C – Capacitive Touch Panel			
10.	VERSION	00 (00-99)			

3 ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT
Supply Voltage For Logic	VDD	-0.3	4.6	V
Input Voltage For Logic	VIN	-0.3	VDD	V
Operating Temperature	Top	-20	70	°C
Storage Temperature	T _{ST}	-30	80	°C
Humidity	RH	-	90% (Max 60°C)	RH

4 ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage For Logic	VDD	2.5	2.8	3.3	V
Input Current	IDD	-	TBD	-	mA
Input Voltage ' H ' level	ViH	0.7VDD	-	VDD	V
Input Voltage ' L ' level	VIL	VSS	-	0.3VDD	V

5 BACKLIGHT CHARACTERISTICS

ITEM	SYMBOL	MIN	TYP	MAX	UNIT
Voltage for LED backlight	Vı	-	3.2	3.4	V
Current for LED backlight	l _l	-	80	-	mA
LED Life Time	-	30000	40000	-	Hrs

Note:

- 1. The LED life time is defined as the module brightness decrease to 50% original brightness at Ta=25°C.
- **2.** The LED 's driver mode needs to be constant current mode.
- **3.** Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded .Functional operation should be restricted to the conditions described under normal operating conditions.

6 ELECTRO-OPTICAL CHARACTERISTICS

ITEM		SYMBOL	CONDITION	MIN	TYP	MAX	UNIT	REMARK	NOTE
Response Time		Tr+Tf		-	25	30	ms	Figure 1	4
Contrast Rat	io	Cr	θ=0°	-	500	-		Figure 2	1
Luminance Uniformity		δ WHITE	Ø=0° Ta=25	80	90.8	-	%	Figure 2	3
Surface Lum	inance	Lv		187	300	-	cd/m ²	Figure 2	2
			Ø = 90°	-	70	-	deg	Figure 3	
		θ	Ø = 270°	-	57	-	deg	Figure 3	
Viewing Ang	le Range	U	Ø = 0°	-	70	-	deg	Figure 3	6
			Ø = 180°	-	70	-	deg	Figure 3	
	Red	X		-	0.6368	-			
		У		-	0.3329	-			
CIE (x, y)	Green	x	_	-	0.3397	-			5
Chromatici ty		У	θ=0°	-	0.6138	-			
cy	Blue	x	Ø=0° Ta=25	-	0.1433	-		Figure 2	
		У		-	0.0807	-			
	White	x		-	0.2886	-			
		У	-	-	0.3194	-			
NTSC	-	S	-	55	67	-		%	-

Note 1. Contrast Ratio(CR) is defined mathematically as below, for more information see Figure 1.

Contrast Ratio =
$$\frac{\text{Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}}{\text{Average Surface Luminance with all black pixels (P1, P2, P3, P4, P5)}}$$

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see Figure 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)

Note 3. The uniformity in surface luminance δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance by minimum luminance of 5 points luminance. For more information see Figure 2.

$$\delta \text{ WHITE } = \frac{\text{Minimum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}}{\text{Maximum Surface Luminance with all white pixels (P1, P2, P3, P4, P5)}}$$

Note 4. Response time is the time required for the display to transition from white to black (Rise Time, Tr) and from black to white (Decay Time, Tf). For additional information see FIG 1. The test equipment is Autronic-Melchers's ConoScope series.

Note 5. CIE (x, y) chromaticity, the x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value.

Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Figure 3.

Note 7. For viewing angle and response time testing, the testing data is based on Autronic-Melchers's ConoScope series. Instruments for Contrast Ratio, Surface Luminance, Luminance Uniformity, CIE the test data is based on TOPCON's BM-5 photo detector.

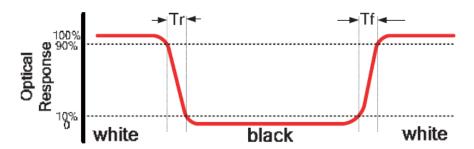


Figure 1. The definition of response time

Figure 2. Measuring method for Contrast ratio, surface luminance, Luminance uniformity, CIE (x, y) chromaticity

A: 5 mm B: 5 mm H,V: Active Area Light spot size Ø=5mm, 500mm distance from the

LCD surface to detector lens measurement instrument is TOPCON's luminance

meter BM-5

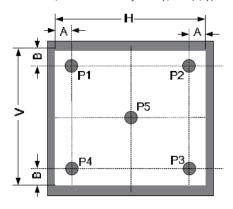
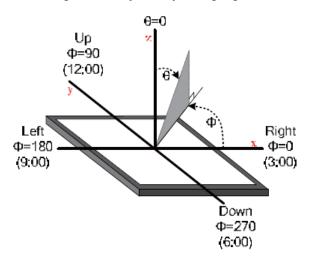
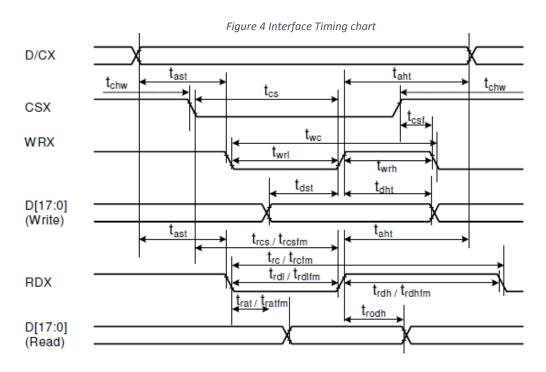



Figure 3.The definition of viewing angle

7 INTERFACE DESCRIPTION

PIN NO.	SYMBOL	DESCRIPTION	REMARK
1	LEDK	Cathode Of LED Backlight	
2	LEDA1	Anode No.1 for LED backlighting	
3	LEDA2	Anode No.2 for LED backlighting	
4	LEDA3	Anode No.3 for LED backlighting	
5	LEDA4	Anode No.4for LED backlighting	
6	IM0		
7	IM1	Select Interface Mode	Note1
8	IM2	Select interface Mode	Note1
9	IM3		
10	RESET	Reset pin	
11	VSYNC	Frame Synchronizing Signal For RGB Interface	
12	HSYNC	Line Synchronizing Signal For RGB Interface	
13	DOTCLK	Dot Clock Signal For RGB Interface	
14	DE	Data Enable Signal For RGB Interface	
15- 32	DB17-DB0	DATA BUS	
33	SDO	Serial Output Signal	
34	SDI	Serial Input Signal	
35	RD	Read execution control pin	

36	WRX(D/CX)	Write execution control pin; Serial Register select s Signal	
37	D/CX(SCL)	Register select signal; Serial Interface Clock	
38	CSX	Hip Select Signal	
39	TE	Tearing effect out pin synchronize MPU to frame writing	
40	VDDI	Power Supply : + 2.8V	
41	VDDI	Power Supply: +2.8V	
42	VCI	Logic power, provide with 2.8V	
43	GND	Power Ground	
44	NC	No Connection	
45	NC	No Connection	
46	NC	No Connection	
47	NC	No Connection	
48	GND	Power Ground	
49	GND	Power Ground	
50	GND	Power Ground	


Note1: (pins 6-9)

Note: (pins 0-3)								
IM	IM	IM	IM	MCU-Interface Mode	REGISTER/	GRAM		
3	2	1	0		CONTENT			
0	0	0	0	8080 MCU 8-bit bus interface I	D[7:0]	D[7:0], WRX, RDX, CSX, D/CX		
0	0	0	1	8080 MCU 16-bit bus interface I	D[7:0]	D[15:0], WRX, RDX, CSX, D/CX		
0	0	1	0	8080 MCU 9-bit bus interface I	D[7:0]	D[8:0], WRX, RDX, CSX, D/CX		
0	0	1	1	8080 MCU 18-bit bus interface I	D[7:0]	D[17:0], WRX, RDX, CSX, D/CX		
0	1	0	1	3-wire 9-bit data serial interface I	SCL, SDA, CSX			
0	1	1	0	4-wire 8-bit data serial interface I	SCL, SDA, D/CX, CSX			
1	0	0	0	8080 MCU 16-bit bus interface II	D[8:1]	D[17:10], D[8:1], WRX, RDX, CSX, D/CX		
1	0	0	1	8080 MCU 8-bit bus interface II	D[17:10]	D[17:10], WRX, RDX, CSX, D/CX		
1	0	1	0	8080 MCU 18-bit bus interface II	D[8:1]	D[17:0], WRX, RDX, CSX, D/CX		
1	0	1	1	8080 MCU 9-bit bus interface II	D[17:10]	D[17:9], WRX, RDX, CSX, D/CX		
1	1	0	1	3-wire 9-bit data serial interface II	SCL, SDA, SDO, CSX			
1	1	1	0	4-wire 8-bit data serial interface II	SCL, SDA, D/CX, SDO, CSX			

8 LCD TIMING CHARACTERISTICS

8.1 Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080-I system)

SIGNAL	SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
DCX	tast	Address setup time	0	-	ns	
	taht	Address hold time (Wrote/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
	trcs	Chip Select setup time (Read IT)	45	-	ns	
CSX	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select setup time (Write/Read)	10	-	ns	
WRX	twc	Write Cycle	66	-	ns	
	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trc	Write Cycle(FM)	450	-	ns	
RDX(FM)	trdh	Read Control H duration (FM)	90	-	ns	
, ,	trdl	Read Control L duration (FM)	355	-	ns	
	trc	Read Cycle (ID)	160		ns	
RDX(ID)	trdh	Read Control pulse H duration	90	-	ns	
` ,	trdl	Read Control pulse L duration	45	-	ns	
D[17:0] D[17:10]	tdst	Write data setup time	10	-	ns	
	tdht	Write data hold time	10	-	ns	Fam. many Cl. 20-5
D[8:1],	trat	Read access time	-	40	ns	For max CL= 30pF For min CL= 8pF
D[17:10],	tratfm	Read access time	-	340	ns	FOI IIIIII CL- opr
D[17:9]	trod	Read output disable time	20	80	ns	

Note1: Ta= -30 to 70°C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V.

Note2: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

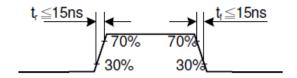


Figure 5 CSX timing

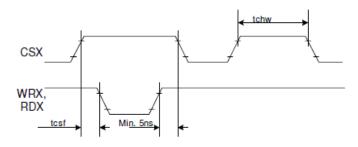
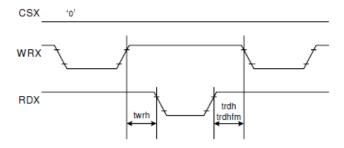
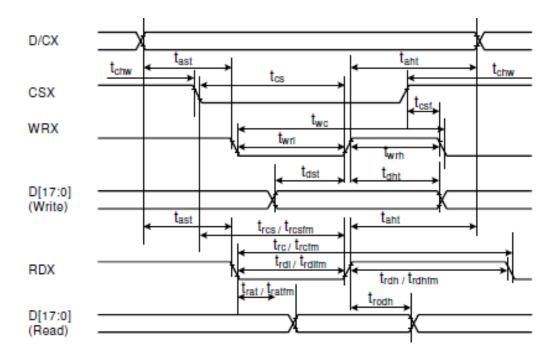




Figure 6 Writing to read or read to write timings

8.2 Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080-II system)

SIGNAL	SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
DCX	tast	Address setup time	0	-	ns	
	taht	Address hold time (Wrote/Read)	0	-	ns	
	tchw	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
	trcs	Chip Select setup time (Read IT)	45	-	ns	
CSX	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select setup time (Write/Read)	10	-	ns	
	twc	Write Cycle	66	-	ns	
WRX	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
	trc	Write Cycle(FM)	450	-	ns	
RDX(FM)	trdh	Read Control H duration (FM)	90	-	ns	
	trdl	Read Control L duration (FM)	355	-	ns	
	trc	Read Cycle (ID)	160		ns	
RDX(ID)	trdh	Read Control pulse H duration	90	-	ns	
-	trdl	Read Control pulse L duration	45	-	ns	
D[17:0] D[17:10]	tdst	Write data setup time	10	-	ns	
	tdht	Write data hold time	10	-	ns	
D[8:1],	trat	Read access time	-	40	ns	For max CL= 30pF For min CL= 8pF
D[17:10],	tratfm	Read access time	-	340	ns	FOI IIIIII CL= 8PF
D[17:9]	trod	Read output disable time	20	80	ns	

Note1: Ta= -30 to 70°C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, VSS=0V.

Note2: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.

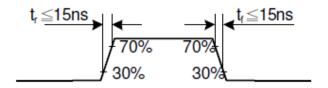


Figure 7 CSX timing

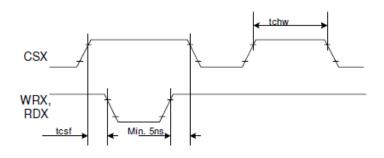
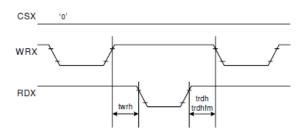
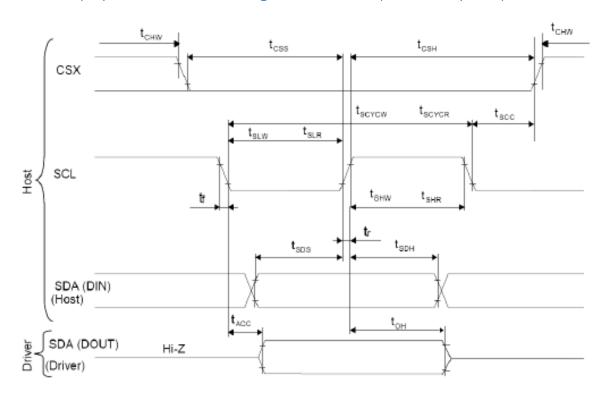
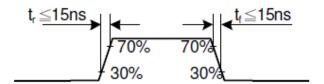
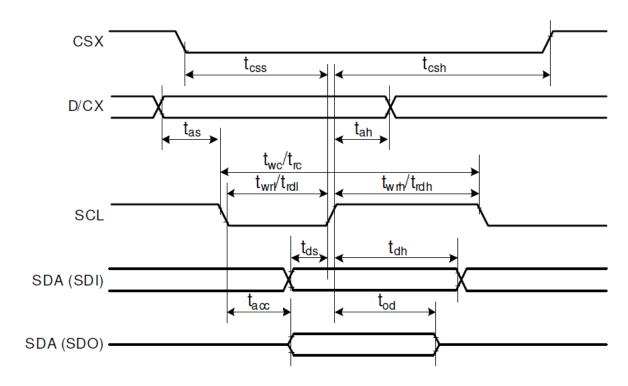




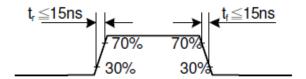
Figure 8 Writing to read or read to write timings



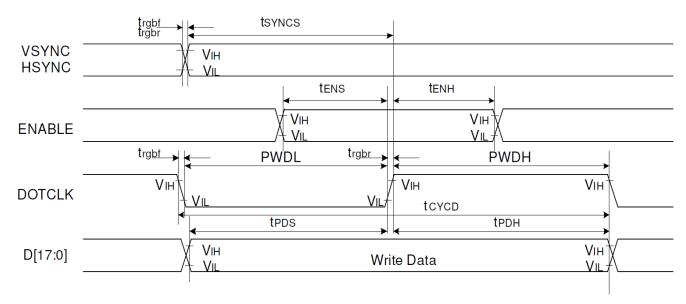
8.3 Display Serial Interface Timing Characteristics (3-line SPI system)


SIGNAL	SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
	tscycw	Serial Clock Cycle (Write)	100	-	ns	
	tshw	SCL "H" Pulse Width(Write)	40	-	ns	
	tslw	SCL "L" Pulse Width(Write)	40	-	ns	
SCL	tscycr	Serial Clock Cycle (Read)	150	-	ns	
	tshr	SCL "H" Pulse Width(Read)	60	-	ns	
	tslr	SCL "L" Pulse Width(Read)	60	-	ns	
SDA/SDI (Input)	tsds	Data setup time (Write)	30	-	ns	
	tsdh	Data hold time (Write)	30	-	ns	
SDA/SDI	tacc	Access time (Read)	10	-	ns	
(Output)	toh	Output disable time (Read)	10	50	ns	
	tscc	SCL-CSX	20	-	ns	
	tchw	CSX "H" Pulse Width	40	-	ns	
CSX	tcss	SCX-SCL Time	60	-	ns	
	tcsh		65	-	ns	

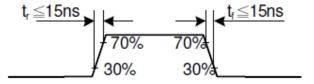
Note: Ta25°C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V.



8.4 Display Serial Interface Timing Characteristics (4-line SPI system)


SIGNAL	SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
CSX	tcss	Serial Clock Cycle (Write)	40	-	ns	
	tcsh	SCL "H" Pulse Width(Write)	40	-	ns	
	twc	Serial Clock Cycle (Read)	100	-	ns	
	twrh	SCL "H" Pulse Width(Read)	40	-	ns	
	twrl	SCL "L" Pulse Width(Read)	40	-	ns	
SCL	trc	Serial clock cycle (Read)	150	-	ns	
	trdh	SCL "H" pulse width(Read)	60	-	ns	
	trdl	SCL "L" pulse width (Read)	60	-	ns	
D/CX	tas	D/CX setup time	10	-		
	tah	D/CX hold time (Write/ Read)	10	-		
SDA/SDI (Input)	tds	Data setup time (Write)	30	-	ns	
	tdh	Data hold time (Write)	30	-	ns	
SDA/SDI (Output)	tacc	Access time (Read)	10	-	ns	For max CL=30pF
	tod	Output disable time (Read)	10	50	ns	For min CL=8pF

Note: Ta25°C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V.



8.5 Parallel 18/16/6-bit RGB Interface Timing Characteristics

SIGNAL	SYMBOL	PARAMETER	MIN	MAX	UNIT	CONDITION
VSYNC/ HSYNC	tsyncs	VSYNC/HSYNC setup time	15	-	ns	18/16 –bit bus RGB interface mode
	tsynch	VSYNC/HSYNC hold time	15	-	ns	
	tens	DE setup time	5	-	ns	
DE	tenh	DE hold time	15	-	ns	
D[47.0]	t _{POS}	Data setup time	15	-	ns	
D[17:0]	t _{PDH}	Data hold time	15	-	ns	
	PWDH	DOTCLK high-level period	15	-	ns	
	PWDL	DOTCLK low-level period	15	-	ns	
DOTCLK	tcycd	DOTCLK cycle time	100			
2010 <u>2</u>	t _{rgbr} , t _{rgbf}	DOTCLK, HSYNC, VSYNC rise/fall time	-	15	ns	
VSYNC/	tsyncs	VSYNC/HSYNC setup time	15	-	ns	6 –bit bus RGB
HSYNC	tsynch	VSYNC/HSYNC hold time	15	-	ns	interface mode
	t _{ENS}	DE setup time	5	-	ns	
DE	t _{ENH}	DE hold time	15	-	ns	
	t _{POS}	Data setup time	15	-	ns	
D[17:0]	t _{PDH}	Data hold time	15	-	ns	
DOTCLK	PWDH	DOTCLK high-level period	15	-	ns	
	PWDL	DOTCLK low-level period	15	-	ns	
	tcycd	DOTCLK cycle time	100			
	trgbr, trgbf	DOTCLK, HSYNC, VSYNC rise/fall time	-	15	ns	

Note: Ta25°C, VDDI=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V.

9 INITIAL CODE

```
// Hardware reset
     GPIO WriteBit(HW_Reset_Pin,1);
      delay ms(50);
     GPIO WriteBit(HW_Reset_Pin,0);
     delay ms(50);
     GPIO WriteBit(HW Reset Pin, 1);
     delay_ms(50);
    LCD WriteCommand(0x01); // Software reset
    delay_ms(5);
    LCD WriteCommand(0x28); //Display off
   LCD WriteCommand(Oxcf); //Power control B
   LCD WriteRAM(0 \times 0 \cdot 0);
   LCD WriteRAM(0x83);
   LCD WriteRAM(0x30);
   LCD WriteCommand(0xed); //Power on sequence control
   LCD WriteRAM(0x64);
   LCD WriteRAM(0x03);
   LCD WriteRAM(0x12);
   LCD WriteRAM(0x81);
   LCD WriteCommand(0xe8); //Driver timing control A
   LCD WriteRAM(0x85);
   LCD WriteRAM(0x01);
   LCD WriteRAM(0x79);
   LCD WriteCommand(0xcb); //Power control A
   LCD WriteRAM(0x39);
   LCD WriteRAM(0x2c);
   LCD WriteRAM(0x00);
   LCD WriteRAM(0x34);
   LCD WriteRAM(0x02);
   LCD_WriteCommand(0xf7); //Pump ratio control
   LCD WriteRAM(0x20);
   LCD WriteCommand(0xea); //Driver timing control B
   LCD WriteRAM(0x00);
   LCD WriteRAM(0 \times 0 0);
   //-----Power Control-----
   LCD WriteCommand(0xc0); // Power Control 1
   LCD WriteRAM(0x26);
   LCD WriteCommand(0xc1); // Power Control 2
   LCD WriteRAM(0x11);
   //-----VCOM setting -----
   LCD WriteCommand(0xc5); // VCOM Control
   LCD WriteRAM(0x35);
   LCD WriteRAM(0x3e);
   LCD WriteCommand(0xc7); // VCOM Control
   LCD WriteRAM(0xbe);
   //-----Memory Access Control-----
   LCD WriteCommand(0x36); //Memory Access Control
   LCD WriteRAM(0x48); //my, mx, mv, ml, BGR, mh, 0.0
   LCD WriteCommand (0x3a); // Pixel Format set
   LCD_WriteRAM(0x55); // 16bit /pixel
   //---- Frame Rate-----
```



```
LCD WriteCommand(0xb1); // Frame rate
LCD WriteRAM(0x00);
LCD WriteRAM(0x10);
//-----Gamma-----
LCD_WriteCommand(0xf2); // 3 Gamma Function Disable
LCD WriteRAM(0 \times 0 8);
LCD_WriteCommand(0x26); // Gamma set 4 gamma curve 01/02/04/08
LCD WriteRAM(0x01);
LCD WriteCommand(0xE0); // Positive Gamma Correction
LCD WriteRAM(0x1f);
LCD_WriteRAM(0x1a);
LCD WriteRAM(0x18);
LCD WriteRAM(0x0a);
LCD WriteRAM(0x0f);
LCD WriteRAM(0x06);
LCD WriteRAM(0x45);
LCD WriteRAM(0x87);
LCD WriteRAM(0x32);
LCD WriteRAM(0x0a);
LCD WriteRAM (0 \times 0.7);
LCD WriteRAM(0 \times 02);
LCD_WriteRAM(0x07);
LCD WriteRAM(0 \times 0.5);
LCD WriteRAM(0x00);
LCD WriteCommand (0xE1); // Negative Gamma Correction
LCD WriteRAM(0x00);
LCD_WriteRAM(0x25);
LCD WriteRAM(0x27);
LCD WriteRAM(0x05);
LCD WriteRAM(0x10);
LCD WriteRAM (0 \times 0.9);
LCD WriteRAM(0x3a);
LCD WriteRAM(0x78);
LCD WriteRAM(0x4d);
LCD WriteRAM(0x05);
LCD WriteRAM(0x18);
LCD WriteRAM(0x0d);
LCD_WriteRAM(0x38);
LCD WriteRAM(0x3a);
LCD WriteRAM(0x1f);
//-----ddram-----
LCD WriteCommand(0x2a); // Column Set
LCD WriteRAM(0 \times 0 0);
LCD WriteRAM(0x00);
LCD WriteRAM(0x00);
LCD WriteRAM(0xEF);
LCD_WriteCommand(0x2b); // Page address set
LCD WriteRAM(0x00);
LCD_WriteRAM(0x00);
LCD WriteRAM(0x01);
LCD WriteRAM(0x3F);
LCD WriteCommand(0xb7); // Entry mode set
LCD WriteRAM(0 \times 0.7);
//-----Display-----
LCD WriteCommand(0xb6); // Display function control
LCD WriteRAM(0x0a);
LCD WriteRAM(0x82);
LCD WriteRAM(0x27);
LCD WriteRAM(0x00);
LCD WriteCommand(0x11); // Sleep out
```



```
delay_ms(100);

LCD_WriteCommand(0x29); // Display on
delay_ms(50);

LCD_WriteCommand(0x2a); // Column set
LCD_WriteRAM(0x00);
LCD_WriteRAM(0x00);
LCD_WriteRAM(0x00);
LCD_WriteRAM(0xEF);

LCD_WriteCommand(0x2b); // Page address set
LCD_WriteRAM(0x00);
LCD_WriteRAM(0x00);
LCD_WriteRAM(0x00);
LCD_WriteRAM(0x01);
LCD_WriteRAM(0x3F);
```

10 RELIABILITY TEST

NO.	TEST ITEM	TEST CONDITION	INSPECTION AFTER TEST				
1	High Temperature Storage	80±2°C/96 hours					
2	Low Temperature Storage	-30±2°C/96 hours					
3	High Temperature Operating	70±2°C/96 hours	Inspection after 2~4 hours storage at				
4	Low Temperature Operating	-20±2°C/96 hours	room temperature and humidity. The condensation is not accepted. The				
5	Temperature Cycle	$-30\pm2^{\circ}\text{C} \sim 25^{\sim} 80\pm 2^{\circ}\text{C} \times 10 \text{ cycles}$ (30 min.) (5min.) (30min.)	sample shall be free from defects:				
6	Damp Proof Test	60°C ±5°C × 90%RH/96 hours	1. Air bubble in the LCD				
7	Vibration Test	Frequency 10Hz~55Hz Stroke: 1.5mm Sweep: 10Hz~150 Hz~10Hz 2 hours For each direction of X, Y, Z	 Seal leak Non-display Missing segments Glass crack 				
8	Shock Test	Half-sine, wave, 300m/s					
9	Packing Drop Test	Height: 80 cm 1 corner, concrete floor					
11	Electrostatic Discharge Test	C=150pF, R=330 Ω Air: ±8KV 150pF/330 Ω 30 times Contact: ±4KV,20 times					

11 LEGAL INFORMATION

Riverdi makes no warranty, either expressed or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose. Information about device are the property of Riverdi and may be the subject of patents pending or granted. It is not allowed to copy or disclosed this document without prior written permission.

Riverdi endeavors to ensure that the all contained information in this document are correct but does not accept liability for any error or omission. Riverdi products are in developing process and published information may be not up to date. Riverdi reserves the right to update and makes changes to Specifications or written material without prior notice at any time. It is important to check the current position with Riverdi.

Images and graphics used in this document are only for illustrative the purpose. All images and graphics are possible to be displayed on the range products of Riverdi, however the quality may vary. Riverdi is no liable to the buyer or to any third part for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) relating to any product, service provided or to be provided by Riverdi, or the use or inability to use the same, even if Riverdi has been advised of the possibility of such damages.

Riverdi products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). Riverdi and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. Using Riverdi products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Riverdi from any and all damages, claims or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Riverdi intellectual property rights.

