RP2040 A microcontroller by Raspberry Pi

Getting started with
Raspberry P1 Pico

C/C++ development with
Raspberry P1 Pico and
other RP2040-based
microcontroller boards

Raspberry Pi Trading Ltd

Getting started with Raspberry Pi Pico

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-01-21
build-version: fcd04ef-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD ("RPTL) "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL's Standard Terms. RPTL's provision of the RESOURCES does not
expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties expressed
in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Getting started with Raspberry Pi Pico

Table of Contents

Colophon. .
Legal Disclaimer Notice
1.Quick PicoSetup
2. The Pico SDK
2.1. Get the Pico SDK and examples
2.2.Installthe Toolchain
3. Blinking an LED in C
3.1.Building "Blink" .
3.2.Loadandrun "Blink".
3.2.1.Fromthedesktop.
3.2.2.Using thecommandline.
4.Saying "HelloWorld"inC
4.1. Serial input and output on Raspberry PiPico.
4.2. Build "Hello World"
4.3. Flash and Run "HelloWorld"
4.4. See "Hello World" USBoutput
4.5. See "Hello World" UART output
4.6. Poweringtheboard
5.DebuggingwithSWD ...
5.1. Build "Hello World" debug version
5.2. Installing OpenOCD
53.InstallingGDB.
5.4. Use GDB and OpenOCD to debug Hello World.
6. Using Visual Studio Code
6.1. Installing Visual Studio Code.
6.2. LoadingaProject.
6.3. Debugging a Project

6.3.1. Running "Hello World" on the Raspberry Pi Pico

7. Creating your own Project.
7.1. Debugging your project
7.2. Working in Visual Studio Code

7.3. Automating project creation
7.3.1. Project generation from the command line . ..

8. Building on other platforms

8.1. Buildingon Apple macOS.
8.1.1. Installing the Toolchain.
8.1.2. Using Visual Studio Code
8.1.3. Building with CMake Tools.
8.1.4. Saying "Hello World"

8.2. Buildingon MSWindows
8.2.1. Installing the Toolchain.
8.2.2. Getting the Pico SDK and examples.
8.2.3. Building "Hello World" from the Command Line
8.2.4. Building "Hello World" from Visual Studio Code
8.2.5. Flashing and Running "Hello World" ...

9. Using other Integrated Development Environments .
9.1. Using Eclipse

9.1.1. Setting up Eclipse for Pico on a Linux machine
9.2.UsingCLion.
9.2.1. Settingup CLion.

9.3. Other Environments
9.3.1.Usingopenocd-svd ...

Appendix A: Using Picoprobe
A.1. Build OpenOCD

AT Linux. oo

Table of Contents

Getting started with Raspberry Pi Pico
]

AT 2. WINdOWS - 52
ATBMAC. 54
A.2.Build and flash picoprobe ... 55
A3.Picoprobe WIriNg. 55
A.4. Install Picoprobe driver (only needed on Windows) . . 56
A5.Using Picoprobe’'s UART 57
ABSTULINUX. 57
A5 2. WINdOWS 57
ADBMAC. 58
A.6.Using Picoprobe with OpenOCD 59
Appendix B:Using Picotool 60
B.1. Getting picotool .. 60
B.2. Building picotool ... 60
B.3.Using picotool ..o 61
B.3.1. Display information . . . 61
B.3.2.Savethe program .. 63
B.4. Binary Information 64
B.4.1.Basicinformation ... 64
BA2. PINS. 65
B.4.3. Including Binary information 65
B.4.4. Details . 66
B.4.5. Setting common fields from CMake ... 67

]
Table of Contents 3

Getting started with Raspberry Pi Pico

Chapter 1. Quick Pico Setup

If you are developing for Raspberry Pi Pico on the Raspberry Pi 4B, or the Raspberry Pi 400, most of the installation steps
in this Getting Started guide can be skipped by running the setup script. You can get this script by doing the following:

$ git clone https://github.com/raspberrypi/pico-setup.git @

1. You should first sudo apt install git if you don’t have Git already installed.

Then run,
$ pico-setup/pico_setup.sh

The script will:
® Create a directory called pico
® |nstall required dependencies
® Download the pico-sdk, pico-examples, pico-extras, and pico-playground repositories
® Define PICO_SDK_PATH, PICO_EXAMPLES_PATH, PICO_EXTRAS_PATH, and PICO_PLAYGROUND_PATH in your ~/.bashrc
® Build the blink and hello_world examples in pico-examples/build/blink and pico-examples/build/hello_world
® Download and build picotool (see Appendix B). Copy it to /usr/local/bin.
e Download and build picoprobe (see Appendix A).
® Download and compile OpenOCD (for debug support)
® Download and install Visual Studio Code
e |nstall the required Visual Studio Code extensions (see Chapter 6 for more details)
® Configure the Raspberry Pi UART for use with Raspberry Pi Pico

Once it has run, you will need to reboot your Raspberry Pi,
$ sudo reboot

for the UART reconfiguration to take effect.

Once your Raspberry Pi has rebooted you can open Visual Studio Code in the "Programming" menu and follow the
instructions from Section 6.2.

]
Chapter 1. Quick Pico Setup 4

https://code.visualstudio.com/Download

Getting started with Raspberry Pi Pico

Chapter 2. The Pico SDK

© IMPORTANT

The following instructions assume that you are using a Raspberry Pi Pico and some details may differ if you are using
a different RP2040-based board. They also assume you are using Raspberry Pi OS running on a Raspberry Pi 4, or an
equivalent Debian-based Linux distribution running on another platform. Alternative instructions for those using
Microsoft Windows (see Section 8.2) or Apple macOS (see Section 8.1) are also provided.

The Raspberry Pi Pico is built around the RP2040 microcontroller designed by Raspberry Pi. Development on the board is
fully supported with both a C/C++ SDK, and an official MicroPython port. This book talks about how to get started with the
SDK, and walks you through how to build, install, and work with the SDK toolchain.

@ TP

For more information on the official MicroPython port see the Pico Python SDK book which documents the port, and
"Get started with MicroPython on Raspberry Pi Pico" by Gareth Halfacree published by Raspberry Pi Press.

@ TP

For more information on the C/C++ SDK, along with API-level documentation, see the Pico C/C++ SDK book.

2.1. Get the Pico SDK and examples

The pico-examples repository (https://github.com/raspberrypi/pico-examples) provides a set of example applications that
are written using the pico-sdk (https://github.com/raspberrypi/pico-sdk). To clone these repositories start by creating a
pico directory to keep all pico related checkouts in. These instructions create a pico directory at /home/pi/pico.

S cd ~/
S mkdir pico
$ cd pico

Then clone the pico-sdk and pico-examples git repositories.

git clone -b master https://github.com/raspberrypi/pico-sdk.git

cd pico-sdk

git submodule update --init

cd ..

git clone -b master https://github.com/raspberrypi/pico-examples.git

W v v v v

2.1. Get the Pico SDK and examples 5

https://datasheets.raspberrypi.org/pico/sdk/pico_python_sdk.pdf
https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-sdk

Getting started with Raspberry Pi Pico

O NoTE

There are additional repositories: pico-extras, and pico-playground that you may also be interested in.

2.2. Install the Toolchain

To build the applications in pico-examples, you'll need to install some extra tools. To build projects you'll need CMake, a
cross-platform tool used to build the software, and the GNU Embedded Toolchain for Arm. You can install both these via
apt from the command line. Anything you already have installed will be ignored by apt.

$ sudo apt update
$ sudo apt install cmake gcc-arm-none-eabi build-essential @

1. Native gcc and g++ are needed to compile pioasm, elf2uf2

]
2.2. Install the Toolchain 6

https://github.com/raspberrypi/pico-extras
https://github.com/raspberrypi/pico-playground
https://cmake.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

Getting started with Raspberry Pi Pico

Chapter 3. Blinking an LED in C

When you're writing software for hardware, turning an LED on, off, and then on again, is typically the first program that
gets run in a new programming environment. Learning how to blink an LED gets you half way to anywhere. We're going to
go ahead and blink the on-board LED on the Raspberry Pi Pico which is connected to pin 25 of the RP2040.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c Lines 9 - 19

9 int main() {

10 const uint LED_PIN = 25;

11 gpio_init(LED_PIN);

12 gpio_set_dir(LED_PIN, GPIO_OUT);
13 while (true) {

14 gpio_put(LED_PIN, 1);

15 sleep_ms(250);

16 gpio_put(LED_PIN, ©);

17 sleep_ms(250) ;

18 }

19 }

3.1. Building "Blink"

From the pico directory we created earlier, cd into pico-examples and create a build directory.

$ cd pico-examples
S mkdir build
$ cd build

Then, assuming you cloned the pico-sdk and pico-examples repositories into the same directory side-by-side, set the
PICO_SDK_PATH

$ export PICO_SDK_PATH=../../pico-sdk
Prepare your cmake build directory by running cmake ..

$ cmake ..
Using PICO_SDK_PATH from environment ('../../pico-sdk')
PICO SDK is located at /home/pi/pico/pico-sdk

-- Build files have been written to: /home/pi/pico/pico-examples/build

. ___|
3.1. Building "Blink" 7

https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c#L9-L19

Getting started with Raspberry Pi Pico

O NoTE

cmake will default to a Release build with compiler optimisations enabled and debugging information removed. To build
a debug version, run cmake -DCMAKE_BUILD_TYPE=Debug ... We will explore this later in Section 5.7.

CMake has now prepared a build area for the pico-examples tree. From here, it is possible to type make to build all example

applications. However, as we are building blink we will only build that application for now by changing directory into the
blink directory before typing make.

@ TIP

Invoking make with -j4 will run four make jobs in parallel to speed it up. A Raspberry Pi 4 has 4 cores so -j4 is a
reasonable number.

$ cd blink
S make -j4

Scanning dependencies of target ELF2UF2Build
Scanning dependencies of target boot_stage2_original
[0%] Creating directories for 'ELF2UF2Build’

[160%] Linking CXX executable blink.elf
[160%] Built target blink

Amongst other targets, we have now built:
® blink.elf, which is used by the debugger
® blink.uf2, which can be dragged onto the RP2040 USB Mass Storage Device

This binary will blink the on-board LED of the Raspberry Pi Pico which is connected to GPI025 of RP2040.

3.2. Load and run "Blink"

The simplest method to load software onto a RP2040-based board is by mounting it as a USB Mass Storage Device.
Doing this allows you to drag a file onto the board to program the flash. Go ahead and connect the Raspberry Pi Pico to

your Raspberry Pi using a micro-USB cable, making sure that you hold down the BOOTSEL button (Figure 1) to force it into
USB Mass Storage Mode.

O NoOTE

Loading code via the USB Mass Storage method is great if you know your program is going to work first time, but if
you are developing anything new it is likely you will want to debug it. So you can also load your software onto RP2040

using the Serial Wire Debug interface, see Chapter 5. As well as loading software this allows you to; set breakpoints,
inspect variables, and inspect memory contents.

]
3.2. Load and run "Blink"

Getting started with Raspberry Pi Pico

Figure 1. Blinking the
on-board LED on the
Raspberry Pi Pico.

Arrows point to the on-

board LED, and the
BOOTSEL button.

© NoTE

If you are not following these instructions on a Raspberry Pi Pico, you may not have a BOOTSEL button, see Figure 1. If
this is the case, you should check if there is some other way grounding the flash ¢S pin, such as a jumper, to tell
RP2040 to enter the BOOTSEL mode on boot. If there is no such method, you can load code using the Serial Wire
Debug interface.

3.2.1. From the desktop

If you are running the Raspberry Pi Desktop the Raspberry Pi Pico should automatically mount as a USB Mass Storage
Device. From here, you can Drag-and-drop blink.uf2 onto the Mass Storage Device.

RP2040 will reboot, unmounting itself as a Mass Storage Device, and start to run the flashed code, see Figure 1.

3.2.2. Using the command line

If you are logged in via ssh for example, you may have to mount the mass storage device manually:

$ dmesg | tail

[371.973555] sd 0:0:0:0: [sda] Attached SCSI removable disk
$ sudo mkdir -p /mnt/pico

$ sudo mount /dev/sdal /mnt/pico

If you can see files in /mnt/pico then the USB Mass Storage Device has been mounted correctly:

$ 1s /mnt/pico/
INDEX.HTM INFO_UF2.TXT

Copy your blink.uf2 onto RP2040:

sudo cp blink.uf2 /mnt/pico
sudo sync

3.2. Load and run "Blink" 9

Getting started with Raspberry Pi Pico
]

RP2040 has already disconnected as a USB Mass Storage Device and is running your code, but for tidiness unmount
/mnt/pico

sudo umount /mnt/pico

© NoTE

Removing power from the board does not remove the code. When the board is reattached to power the code you have
just loaded will begin running again. If you want to remove the code from the board, and upload new code, press and
hold the BOOTSEL switch when applying power to put the board into Mass Storage mode.

Need more detail?

This document shows how to build software and load it onto your Raspberry Pi Pico. A lot goes on behind
the scenes to turn our blink application into a binary program, and the Pico C/C++ SDK book pulls back
the curtain and shows some of the machinery involved. If you aren’'t worried about this kind of thing yet,

read on!

]
3.2. Load and run "Blink" 10

https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf

Getting started with Raspberry Pi Pico

Chapter 4. Saying "Hello World" in C

After blinking an LED on and off, the next thing that most developers will want to do is create and use a serial port, and say
"Hello World."

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/hello_world/serial/hello_serial.c Lines 10 - 17

10 int main() {

11 stdio_init_all();

12 while (true) {

13 printf("Hello, world!\n");
14 sleep_ms(1000) ;

15 }

16 return 0;

17 }

4.1. Serial input and output on Raspberry Pi Pico

Serial input (stdin) and output (stdout) can be directed to either serial UART or to USB CDC (USB serial). However by
default stdio and printf will target the default Raspberry Pi Pico UARTO.

Raspberry Pi Pico Default UARTO

GND (Pin 3)

GPO (UARTO_TX, Pin 1)

GP1 (UARTO_RX, Pin 2)

© IMPORTANT

The default Raspberry Pi Pico UART TX pin (out from Raspberry Pi Pico) is pin GPO, and the UART RX pin (in to
Raspberry Pi Pico) is pin GP1. The default UART pins are configured on a per-board basis using board configuration
files. The Raspberry Pi Pico configuration can be found in https://github.com/raspberrypi/pico-sdk/tree/master/src/
boards/include/boards/pico.h. The Pico SDK defaults to a board name of Raspberry Pi Pico if no other board is
specified.

The Pico SDK makes use of CMake to control its build system, see Chapter 7, making use of the pico_stdlib interface
library to aggregate necessary source files to provide capabilities.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/hello_world/serial/CMakeLists.txt Lines 1 - 12

add_executable(hello_serial
hello_serial.c

)

1
2
8
4
5 # Pull in our pico_stdlib which aggregates commonly used features
6 target_link_libraries(hello_serial pico_stdlib)

7

8 # create map/bin/hex/uf2 file etc.

9 pico_add_extra_outputs(hello_serial)

10

11 # add url via pico_set_program_url

12 example_auto_set_url(hello_serial)

]
4.1. Serial input and output on Raspberry Pi Pico 1

https://github.com/raspberrypi/pico-examples/tree/master/hello_world/serial/hello_serial.c#L10-L17
https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h
https://github.com/raspberrypi/pico-examples/tree/master/hello_world/serial/CMakeLists.txt#L1-L12

Getting started with Raspberry Pi Pico
]

The destination for stdout can be changed using CMake directives, with output directed to UART or USB CDC, or to both,

pico_enable_stdio_usb(hello_world 1) @
pico_enable_stdio_uart(hello_world 8) @

1. Enable printf output via USB CDC (USB serial)
2. Disable printf output via UART

This means that without changing the C source code, you can change the destination for stdio from UART to USB.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/hello_world/usb/CMakeLists.txt Lines 1- 16

add_executable(hello_usb
hello_usb.c
)

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_usb pico_stdlib)

0w NOoO o WN =

enable usb output, disable uart output
pico_enable_stdio_usb(hello_usb 1)

10 pico_enable_stdio_uart(hello_usb @)

11

12 # create map/bin/hex/uf2 file etc.

13 pico_add_extra_outputs(hello_usb)

14

15 # add url via pico_set_program_url

16 example_auto_set_url(hello_usb)

O

4.2. Build "Hello World"

As we did for the previous "Blink" example, change directory into the hello_wor1d directory inside the pico-examples tree, and
run make.

$ cd hello_world

S make -j4

Scanning dependencies of target ELF2UF2Build

[0%] Creating directories for 'ELF2UF2Build’

[33%] Linking CXX executable hello_usb.elf
[33%] Built target hello_usb

[160%] Linking CXX executable hello_serial.elf
[160%] Built target hello_serial

This will build two separate examples programs in the hello_world/serial/ and hello_world/usb/ directories.
Amongst other targets, we have now built:

® serial/hello_serial.elf, which is used by the debugger

. ___|
4.2. Build "Hello World" 12

https://github.com/raspberrypi/pico-examples/tree/master/hello_world/usb/CMakeLists.txt#L1-L16

Getting started with Raspberry Pi Pico

® serial/hello_serial.uf2, which can be dragged onto the RP2040 USB Mass Storage Device (UART serial binary)
® usb/hello_usb.elf, which is used by the debugger
® usb/hello_usb.uf2, which can be dragged onto the RP2040 USB Mass Storage Device (USB serial binary)

Where hello_serial directs stdio to UARTO on pins GPO and GP1, and hello_usb directs stdio to USB CDC serial.

4.3. Flash and Run "Hello World"

Connect the Raspberry Pi Pico to your Raspberry Pi using a micro-USB cable, making sure that you hold down the BOOTSEL
button to force it into USB Mass Storage Mode. Once it is connected release the BOOTSEL button and if you are running the
Raspbrerry Pi Desktop it should automatically mount as a USB Mass Storage Device. From here, you can Drag-and-drop
either the hello_serial.uf2 or hello_usb.uf2 onto the Mass Storage Device.

RP2040 will reboot, unmounting itself as a Mass Storage Device, and start to run the flashed code.

However although the "Hello World" example is now running, we cannot yet see the text. We need to connect our host
computer to the standard UART on the Raspberry Pi Pico to see the output.

4.4. See "Hello World" USB output

If you have dragged and dropped the hello_usb.uf2 binary, then the "Hello World" text will be directed to USB serial.

Figure 2. Connecting
the Raspberry Pi to
Raspberry Pi Pico via
USB.

With your Raspberry Pi Pico connected directly to your Raspberry Pi via USB, see Figure 2, you can see the text by
installing minicom:

$ sudo apt install minicom

and open the serial port:

$ minicom -b 115200 -o -D /dev/ttyACMO

You should see Hello, world! printed to the console.

4.3. Flash and Run "Hello World" 13

Getting started with Raspberry Pi Pico

@ TP

To exit minicom, use CTRL-A followed by X.

4.5. See "Hello World" UART output

Alternatively if you dragged and dropped the hello_usb.uf2 binary, then the "Hello World" text will be directed to UARTO on
pins GPO and GP1. The first thing you'll need to do to see the text is enable UART serial communications on the Raspberry
Pi host. To do so, run raspi-config,

$ sudo raspi-config

and go to Interfacing Options — Serial and select "No" when asked "Would you like a login shell to be accessible over
serial?" and "Yes" when asked "Would you like the serial port hardware to be enabled?" You should see something like

Figure 3.
Figure 3. Enabling a pi@raspberrypi: ~
serial UART using File Edit Tabs Help
raspi-configon

the Raspberry Pi.

The serial login shell is disabled
The serial interface is enabled

Leaving raspi-config you should choose "Yes" and reboot your Raspberry Pi to enable the serial port.

You should then wire the Raspberry Pi and the Raspberry Pi Pico together with the following mapping:

Raspberry Pi Raspberry Pi Pico

GND (Pin 14) GND (Pin 3)

GPIO15 (UART_RXO, Pin 10) GPO (UARTO_TX, Pin 1)
GPI014 (UART_TXO, Pin 8) GP1 (UARTO_RX, Pin 2)
See Figure 4.

4.5. See "Hello World" UART output 14

Getting started with Raspberry Pi Pico

Figure 4. A Raspberry
Pi 4 and the Raspberry
Pi Pico with UARTO
connected together.

]

Once the two boards are wired together if you have not already done so you should install minicom:

$ sudo apt install minicom

and open the serial port:

$ minicom -b 1152008 -o -D /dev/serial®@

Toggling the power to Raspberry Pi Pico you should see Hello, world! printed to the console.

@ TP

To exit minicom, use CTRL-A followed by X.

4.6. Powering the board

You can unplug the Raspberry Pi Pico from USB, and power the board by additionally connecting the Raspberry Pi's 5V pin
to the Raspberry Pi Pico VSYS pin via a diode, see Figure 5, where in the ideal case the diode would be a Schottky diode.

]
4.6. Powering the board 15

https://en.wikipedia.org/wiki/Schottky_diode

Getting started with Raspberry Pi Pico

Figure 5. Raspberry Pi
and Raspberry Pi Pico
connected only using

the GPIO pins.

fritzing

Whilst it is possible to connect the Raspberry Pi's 5V pin to the Raspberry Pi Pico VBUS pin, this is not recommended.
Shorting the 5V rails together will mean that the Micro USB cannot be used. An exception is when using the Raspberry Pi
Pico in USB host mode, in this case 5V must be connected to the VBUS pin.

The 3.3V pin is an OUTPUT pin on the Raspberry Pi Pico, you cannot power the Raspberry Pi Pico via this pin, and it should
NOT be connected to a power source.

4.6. Powering the board 16

Getting started with Raspberry Pi Pico

Chapter 5. Debugging with SWD

© IMPORTANT

These instructions assume that you are using a Raspberry Pi Pico, details may differ if you are using an alternative
RP2040-based board.

The Raspberry Pi Pico provides a SWD (Single Wire Debug) port which can be used to interactively debug a binary running
on RP2040. However to use it you will first need build a special debug version of your binary and install some additional
tools.

5.1. Build "Hello World" debug version

You can build a debug version of the "Hello World"" with CMAKE_BUILD_TYPE=Debug as shown below,

S cd ~/pico/pico-examples/
S rm -rf build
$ mkdir build

$ cd build

S export PICO_SDK_PATH=../../pico-sdk
$ cmake -DCMAKE_BUILD_TYPE=Debug ..

$ cd hello_world

S make -j4

5.2. Installing OpenOCD

OpenOCD is a debug translator: it allows a host system to load, run and debug software on RP2040, and to interactively
poke and explore hardware registers. OpenOCD can attach to RP2040's SWD port via a number of hardware interfaces,
including direct bitbanging from Raspberry Pi GPIOs.

The default configuration is to have SWDIO on Pi GPIO 24, and SWCLK on GPIO 25 — this can be wired to a Raspberry Pi
Pico as seen in Figure 6.

5.1. Build "Hello World" debug version 17

Getting started with Raspberry Pi Pico

Figure 6. A Raspberry
Pi 4 and the Raspberry
Pi Pico with UART and
SWD port connected
together. Both are
jumpered directly back
to the Raspberry Pi 4
without using a
breadboard.

If possible you should wire the SWD port directly to the Raspberry Pi as signal integrity is important; wiring the SWD port
via a breadboard or other indirect methods may reduce the signal integrity sufficiently so that loading code over the
connection is erratic or fails completely. It is important to also wire the ground wire (0v) between the two directly and not
rely on another ground path.

Note the Raspberry Pi Pico must also be powered (e.g. via USB) in order to debug it! You must build our OpenOCD branch
to get working multidrop SWD support:

O NoTE

These instructions assume you want to build openocd in /home/pi/pico/openocd

$ cd ~/pico

$ sudo apt install automake autoconf build-essential texinfo libtool libftdi-dev libusb-1.8-0-
dev

$ git clone https://github.com/raspberrypi/openocd.git --recursive --branch rp2040 --depth=1

$ cd openocd

$./bootstrap

$./configure --enable-ftdi --enable-sysfsgpio --enable-bcm2835gpio

S make -j4

$ sudo make install

5.3. Installing GDB

Install gdb-multiarch,

$ sudo apt install gdb-multiarch

]
5.3. Installing GDB 18

Getting started with Raspberry Pi Pico

5.4. Use GDB and OpenOCD to debug Hello World

Ensuring your Raspberry Pi 4 and Raspberry Pi Pico are correctly wired together, we can attach OpenOCD to the chip, via
the raspberrypi-swd interface.

$ openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

Your output should look like this:

Info : rp204@.core@: hardware has 4 breakpoints, 2 watchpoints
Info : rp204@.corel: hardware has 4 breakpoints, 2 watchpoints
Info : starting gdb server for rp204@.core@ on 3333

Info : Listening on port 3333 for gdb connections

@ WARNING

If you see an error like Info : DAP init failed then your Raspberry Pi Pico is either powered off, wired incorrectly, or
has signal integrity issues. Try different GPIO jumper cables.

This OpenOCD terminal needs to be left open. So go ahead and open another terminal, in this one we'll attach a gdb
instance to OpenOCD. Navigate to the "Hello World" example code, and start gdb from the command line.

$ cd ~/pico/pico-examples/build/hello_world
$ gdb-multiarch hello_world.elf

Connect GDB to OpenOCD,

(gdb) target remote localhost:3333

@ TIP

You can create a .gdbinit file so you don't have to type target remote localhost:3333 every time. Do this with echo
"target remote localhost:3333" > ~/.gdbinit. However, this interferes with debugging in VSCode (Chapter 6).

and load hello_world.elf into flash,

(gdb) load

Loading section .boot2, size 0x100 lma 0x10000000
Loading section .text, size 0x22d0 1lma ©x10000100
Loading section .rodata, size 0x4a@ lma 6x100023d0
Loading section .ARM.exidx, size 0x8 lma 0x10002870
Loading section .data, size 0xb94 1lma ©x10002878
Start address 0x10000104, load size 13324

Transfer rate: 31 KB/sec, 2664 bytes/write.

and then start it running.

]
5.4. Use GDB and OpenOCD to debug Hello World 19

Getting started with Raspberry Pi Pico

(gdb) monitor reset init
(gdb) continue

© IMPORTANT

If you see errors similar to Error finishing flash operation or Error erasing flash with vFlashErase packet in GDB when
attempting to load the binary onto the Raspberry Pi Pico via OpenOCD then there is likely poor signal integrity between
the Raspberry Pi and the Raspberry Pi Pico. If you are not directly connecting the SWD connection between the two
boards, see Figure 6, you should try to do that. Alternatively you can try reducing the value of adapter_khz in the
raspberrypi-swd.cfg configuration file, trying halving it until you see a successful connection between the boards. As
we're bitbanging between the boards timing is marginal, so poor signal integrity may cause errors.

Or if you want to set a breakpoint at main() before running the executable,

(gdb) monitor reset init
(gdb) b main
(gdb) continue

Thread 1 hit Breakpoint 1, main () at /home/pi/pico/pico-examples/hello_world/hello_world.c:11
11 setup_standard_uart();

before continuing after you have hit the breakpoint,

(gdb) continue

To quit from gdb type,

(gdb) quit

]
5.4. Use GDB and OpenOCD to debug Hello World 20

Getting started with Raspberry Pi Pico

Chapter 6. Using Visual Studio Code

Visual Studio Code (VSCode) is a popular open source editor developed by Microsoft. It is the recommended Integrated
Development Environment (IDE) on the Raspberry Pi 4 if you want a graphical interface to edit and debug your code.

6.1. Installing Visual Studio Code

© IMPORTANT

These installation instructions rely on you already having downloaded and installed the command line toolchain, see
Chapter 3, as well as downloading and building both OpenOCD and GDB and configuring them for command line
debugging, see Chapter 5.

ARM versions of Visual Studio Code for the Raspberry Pi can be downloaded from https://code.visualstudio.com/
Download. If you are using a 32-bit operating system (e.g. the default Raspberry Pi OS) then download the ARM .deb file; if
you are using a 64-bit OS, then download the ARM 64 .deb file. Once downloaded, double click on the .deb package and
follow the instructions to install it.

Install the downloaded .deb. package from the command line. cd to the folder where the file was downloaded, then use
dpkg -i <downloaded file name.deb> to install.

Once the install has completed, install the extensions needed to debug a Raspberry Pi Pico:

code --install-extension marus25.cortex-debug
code --install-extension ms-vscode.cmake-tools
code --install-extension ms-vscode.cpptools

Finally, start Visual Studio Code from a Terminal window:

$ export PICO_SDK_PATH=/home/pi/pico/pico-sdk
S code

Ensure you set the PIC0_SDK_PATH so that Visual Studio Code can find the Pico SDK.

O NoOTE

If PICO_SDK_PATH is not set by default in your shell's environment you will have to set it each time you open a new
Terminal window before starting vscode, or start vscode from the menus. You may therefore want to add it to your
.profile or .bashrec file.

6.2. Loading a Project
Go ahead and open the pico-examples folder by going to the Explorer toolbar (Ctr1 + Shift + E), selecting "Open Folder,"
and nagivating to, /home/pi/pico/pico-examples in the file popup. Then click "OK" to load the Folder into VSCode.

As long as the CMake Tools extension is installed, after a second or so you should see a popup in the lower right-hand
corner of the vscode window.

Hit "Yes" to configure the project. You will then be prompted to choose a compiler, see Figure 7,

6.1. Installing Visual Studio Code 21

https://code.visualstudio.com/Download
https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools

Getting started with Raspberry Pi Pico

Figure 7. Prompt to welcome - pico-examples - Code - 0SS (headmelted)
choose the correct File Edit Selection View Go Run Terminal Help
compiler for the @ EXPLORER co-examples

project. OPEN EDITORS

v PICO-EXAMPLI

Customize

Recent

Learn

rt.cmake Find and run all commands

QUTLINE
> TIMELINE
2 pre_release & ®0A 0 (D CMake: [Debug]: Ready 3% NoKit Selected ¢ Bulld _[al] b

and you should select 6CC for arm-none-eabi from the drop down menu.

@ TP

If you miss the popups, which will close again after a few seconds, you can configure the compiler by clicking on "No
Kit Selected" in the blue bottom bar of the VSCode window.

You can then either click on the "Build" button in the blue bottom bar to build all of the examples in pico-examples folder, or
click on where it says "[all]" in the blue bottom bar. This will present you with a drop down where you can select a project.
For now type in "hello_world" and select the "Hello World" executable. This means that VSCode will only build the "Hello
World" example saving compile time.

@ TP

You can toggle between building "Debug" and "Release" executables by clicking on where it says "CMake: [Debug]:
Ready" in the blue bottom bar. The default is to build a "Debug" enabled executable ready for SWD debugging.

Go ahead and click on the "Build" button (with a cog wheel) in the blue bottom bar of the window. This will create the build
directory and run CMake as we did by hand in Section 3.1, before starting the build itself, see Figure 8.

6.2. Loading a Project 22

Getting started with Raspberry Pi Pico

Figure 8. Building the welcome - pico-examples - Code - OSS (headmelted)
pico-examples File Edit Selection View Go Run Terminal Help

project in Visual ErLErE [E weicome x

srudio Code OPEN EDITORS

Start Customize

Recent

Learn

Find ar

> OUTLINE dk wmon/pi Cancel

> TIMELINE
o pre_release & ® 00 (D CMake: [Debug]: Building 3% [GCC for arm-none-eabi 7.3.1] x Stop _[al] > 2

As we did from the command line previously, amongst other targets, we have now built:
® hello_world.elf, which is used by the debugger

® hello_world.uf2, which can be dragged onto the RP2040 USB Mass Storage Device

6.3. Debugging a Project

The pico-examples repo contains an example debug configuration that will start OpenOCD, attach GDB, and finally launch
the application CMake is configured to build. Go ahead and copy this file (launch-raspberrypi-swd.json) into the pico-
examples/.vscode directory as launch.json. We also provide a settings.json file that we recommend you also copy. This
settings.json removes some potentially confusing options from the CMake plugin (including a broken Debug and Run
buttons that attempt to run a Pico binary on the host).

cd ~/pico/pico-examples

mkdir .vscode

cp ide/vscode/launch-raspberrypi-swd.json .vscode/launch.json
cp ide/vscode/launch-raspberrypi-swd.json .vscode/settings.json

w v U

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/ide/vscode/launch-raspberrypi-swd.json Lines 1 - 27

~

"version": "0.2.0",
"configurations": [
{

"name": "Pico Debug",
"cwd": "${workspaceRoot}",
"executable": "${command:cmake.launchTargetPath}",
"request”: "launch",
"type": "cortex-debug",
"servertype": "openocd",

® O 00 N O g b WN =

=

6.3. Debugging a Project 23

https://github.com/raspberrypi/pico-examples/tree/master/ide/vscode/launch-raspberrypi-swd.json#L1-L27

Getting started with Raspberry Pi Pico
___|

11 // This may need to be arm-none-eabi-gdb depending on your system
12 "gdbpath” : "gdb-multiarch”,
13 "device": "RP2040",
14 "configFiles": [
15 "interface/raspberrypi-swd.cfg",
16 "target/rp2040.cfg"
17 Il
18 "svdFile": "/home/pi/pico/pico-sdk/src/rp2040/hardware_regs/rp2040.svd",
19 "runToMain": true,
20 // Work around for stopping at main on restart
21 "postRestartCommands”: [
22 "break main",
23 "continue"
24 1
25 }
26]
27 }
© NoOTE

You may have to amend the gdbpath in launch.json if your gdb is called arm-none-eabi-gdb instead of gdb-multiarch

6.3.1. Running "Hello World" on the Raspberry Pi Pico

O IMPORTANT

Ensure that the example "Hello World" code has been as a Debug binary (CMAKE_BUILD_TYPE=Debug).

Now go to the Debug toolbar (Ctrl + Shift + D) and click the small green arrow (play button) at the top of the left-hand
window pane to load your code on the Raspberry Pi Pico and start debugging.

Figure 9. Debugging
the "Hello World"
binary inside Visual
Studio Code

nwm -

1: minicom

v BREAKPOINTS
» CORTEX PERIPHERALS
> CORTEX REGISTERS
o pre_release & @00 [Cortex Debug (pico-examples) Ln12,Coll Spacesi4d UTF-8 LF C & 0

___|
6.3. Debugging a Project 24

Getting started with Raspberry Pi Pico

The code should now be loaded and on to the Raspberry Pi Pico, and you should see the source code for "Hello World" in
the main right-hand (upper) pane of the window. The code will start to run and it will proceed to the first breakpoint —

enabled by the runToMain directive in the launch. json file. Click on the small blue arrow (play button) at the top of this main
source code window to Continue (F5) and start the code running.

@ TP

If you switch to the "Terminal" tab in the bottom right-hand pane, below the hello_world.c code, you can use this to
open minicom inside VSCode to see the UART output from the "Hello World" example by typing,

$ minicom -b 1152008 -0 -D /dev/serial®

at the terminal prompt as we did before, see Section 4.5.

]
6.3. Debugging a Project

25

Getting started with Raspberry Pi Pico

@ These lines
will add strings
to the binary
visible using
picotool, see
Appendix B.

Chapter 7. Creating your own Project

Go ahead and create a directory to house your test project sitting alongside the pico-sdk directory,

$ 1s -la
total 16
drwxr-xr-x 7
drwx------ @ 27

drwxr-xr-x 10
drwxr-xr-x 13
S mkdir test

$ cd test

aa
aa
aa
aa

staff
staff
staff
staff

224
864
320
416

6 Apr
6 Apr
6 Apr
6 Apr

and then create a test.c file in the directory,

o N o g wWwN =

int main() {

N N NN 2 4O g a a a a a4 a
W N 2 ® O 0N O o b WN =2 ® O
~

24 }

#include <stdio.h>
#include "pico/stdlib.h”

#include "hardware/gpio.h"
#include "pico/binary_info.h"

const uint LED_PIN = 25;

stdio_init_all();

gpio_init(LED_PIN);

gpio_set_dir(LED_PIN, GPIO_OUT);

while (1) {
gpio_put(LED_PIN, ©);
sleep_ms(250);
gpio_put(LED_PIN, 1);
puts("Hello World\n");
sleep_ms(1000) ;

along with a CMakeLists. txt file,

cmake_minimum_required(VERSION 3.12)

include(pico_sdk_import.cmake)

project(test_project)

pico_sdk_init()

add_executable(test

TESiE.©

pico_enable_stdio_usb(test 1)®

10:41 ./

10:41 ../

09:29 pico-examples/
09:22 pico-sdk/

bi_decl(bi_program_description("This is a test binary."));®
bi_decl(bi_1pin_with_name(LED_PIN,

"On-board LED"));

Chapter 7. Creating your own Project

26

Getting started with Raspberry Pi Pico

pico_enable_stdio_uart(test 1)@

pico_add_extra_outputs(test)

target_link_libraries(test pico_stdlib)

1. This will enable serial output via USB.

2. This will enable serial output via UART.

Then copy the pico_sdk_import.cmake file from the external folder in your pico-sdk installation to your test project folder.

S cp ../pico-sdk/external/pico_sdk_import.cmake .

You should now have something that looks like this,

$ 1s -la

total 24

drwxr-xr-x 5
drwxr-xr-x 7
-rw-r--r--@ 1
-rw-r--r-- 1
== r==r== 1

aa
aa
aa
aa
aa

staff
staff
staff
staff
staff

160 6 Apr 10:46 ./

224 6 Apr 10:41 ../

394 6 Apr 10:37 CMakelists.txt
2744 6 Apr 10:40 pico_sdk_import.cmake
383 6 Apr 10:37 test.c

and can build it as we did before with our "Hello World" example.

$ mkdir build
S cd build

S export PICO_SDK_PATH=../../pico-sdk

S cmake ..
S make

The make process will produce a number of different files. The important ones are shown in the following table.

File extension Description

.bin Raw binary dump of the program code and data

elf The full program output, possibly including debug information

uf2 The program code and data in a UF2 form that you can drag-and-drop on to the RP2040
board when it is mounted as a USB drive

dis A disassembly of the compiled binary

-hex Hexdump of the compiled binary

.map A map file to accompany the .elf file describing where the linker has arranged segments in
memory

Chapter 7. Creating your own Project

27

Getting started with Raspberry Pi Pico

© NoTE

UF2 (USB Flashing Format) is a file format, developed by Microsoft, that is used for flashing the RP2040 board over
USB. More details can be found on the Microsoft UF2 Specification Repo

O NoOTE

To build a binary to run in SRAM, rather than Flash memory you can either setup your cmake build with -DPICO_NO_FLASH=1
or you can add pico_set_binary_type(TARGET_NAME no_flash) to control it on a per binary basis in your CMakeLists. txt file.
You can download the RAM binary to RP2040 via UF2. For example, if there is no flash chip on your board, you can
download a binary that runs on the on-chip RAM using UF2 as it simply specifies the addresses of where data goes.
Note you can only download in to RAM or FLASH, not both.

7.1. Debugging your project

Debugging your own project from the command line follows the same processes as we used for the "Hello World"
example back in Section 5.4. Connect your Raspberry Pi and the Raspberry Pi Pico as in Figure 10.

Figure 10. A Raspberry
Pi 4 and the Raspberry
Pi Pico with UART and
SWD debug port
connected together.
Both are jumpered
directly back to the
Raspberry Pi 4 without
using a breadboard.

20}
20
20]
20
20
20]
20
20
20
20
20
20

Then go ahead and build a debug version of your project using CMAKE_BUILD_TYPE=Debug as below,

$ cd ~/pico/test
$ rmdir build
S mkdir build

$ cd build

$ export PICO_SDK_PATH=../../pico-sdk
S cmake -DCMAKE_BUILD_TYPE=Debug ..

S make

Then open up a terminal window and attach OpenOCD using the raspberrypi-swd interface.

S openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

7.1. Debugging your project 28

https://github.com/Microsoft/uf2

Getting started with Raspberry Pi Pico
]

This OpenOCD terminal needs to be left open. So go ahead and open another terminal window and start gdb-multiarch
using

$ cd ~/pico/test/build
$ gdb-multiarch test.elf

Connect GDB to OpenOCD, and load the test.elf binary into flash,

(gdb) target remote localhost:3333
(gdb) load

and then start it running,

(gdb) monitor reset init
(gdb) continue

7.2. Working in Visual Studio Code

If you want to work in Visual Studio Code rather than from the command line you can do that, see Chapter 6 for
instructions on how to configure the environment and load your new project into the development environment to let you
write and build code.

If you want to also use Visual Studio Code to debug and load your code onto the Raspberry Pi Pico you'll need to create a
launch. json file for your project. The example launch-raspberrypi-swd.json in Chapter 6 should work. You need to copy it
into your project directory as .vscode/launch. json.

7.3. Automating project creation

Some automation has been created which will automatically create a "stub" project with all the necessary files to allow it
to build. If you want to make use of this you'll need to go ahead and clone the project creation script from its Git
repository,

$ git clone https://github.com/raspberrypi/pico-project-generator.git
It can then be run in graphical mode,

$ cd pico-project-generator
$./pico_project.py --gui

which will bring up a GUI interface allowing you to configure your project, see Figure 11.

]
7.2. Working in Visual Studio Code 29

Getting started with Raspberry Pi Pico

Figure 11. Creating a
RP2040 project using
the graphical project
creation tool.

| Raspberry Pi Pico Project Generator - ox

' Raspberry Pi

Project Name : |ProjectName

Location : |fhomefiamesha’pmj ects/gitlab/pico_project

Browse

~Features
[~ SPI

[7 12C interface
[DMA support

[PIO interface
" HW interpolation
[~ HW timer

[HW watchdog
[HW clocks

~Console Options

M Console over UART [Console over USB (Disables other USE use)

~Code Options

[~ Add examples for Pico library [Run from RAM : Advanced...

~Build Options

[Run build [Overwrite project [Create VSCode project

Help

Quit oK

You can add specific features to your project by selecting them from the check boxes on the GUI. This will ensure the
build system adds the appropriate code to the build, and also adds simple example code to the project showing how to

use the feature.

There are a number of options available, which provide the following functionality.

Console Options

Description

Console over UART

Enable a serial console over the UART. This is the default.

Console over USB

Enable a console over the USB. The device will act as a USB serial port. This can
be used in addition to or instead of the UART option, but note that when
enabled other USB functionality is not possible.

Code Options

Description

Add examples for Pico library

Example code will be generated for some of the standard library features that
by default are in the build, for example, UART support and HW dividers.

Run from RAM

Usually, the build creates a binary that will be installed to the flash memory.
This forces the binary to work directly from RAM

Advanced Brings up a table allowing selection of specific board build options. These
options alter the way the features work, and should be used with caution.

Build Options Description

Run Build Once the project has been created, build it. This will produce files ready for

download to the Raspberry Pi Pico.

Overwrite Project

If a project already exists in the specified folder, overwrite it with the new
project. This will overwrite any changes you may have made.

Create VSCode Project

As well as the CMake files, also create the appropriate Visual Studio Code
project files.

]
7.3. Automating project creation

30

Getting started with Raspberry Pi Pico
]

7.3.1. Project generation from the command line

The script also provides the ability to create a project from the command line, e.g.

$ export PICO_SDK_PATH="/home/pi/pico/pico-sdk"
$./pico_project.py --feature spi --feature i2c --project vscode test

The --feature options add the appropriate library code to the build, and also example code to show basic usage of the
feature. You can add multiple features, up to the memory limitation of the RP2040. You can use the --1ist option of the
script to list all the available features. The example above adds support for the I2C and SPI interfaces.

Here passing the --project option will mean that at .vscode/launch.json, .vscode/c_cpp_properties.json, and
.vscode/settings.json files are also created in addition to the CMake project files.

Once created you can build the project in the normal way from the command line,

S cd test/build
$ cmake ..
S make

or from Visual Studio code.

You can use the --help option to give a list of command line arguments, these will also be applied when using the
graphical mode.

Need more detail?

There should be enough here to show you how to get started, but you may find yourself wondering why
some of these files and incantations are needed. The Pico C/C++ SDK book dives deeper into how your
project is actually built, and how the lines in our CMakeLists.txt files here relate to the structure of the SDK,
if you find yourself wanting to know more at some future point.

7.3. Automating project creation 31

https://datasheets.raspberrypi.org/pico/sdk/pico_c_sdk.pdf

Getting started with Raspberry Pi Pico

Chapter 8. Building on other
platforms

While the main supported platform for developing for the RP2040 is the Raspberry Pi, support for other platforms, such as
Apple macOS and Microsoft Windows, is available.

8.1. Building on Apple macOS

Using macOS to build code for RP2040 is very similar to Linux.

8.1.1. Installing the Toolchain

Installation depends on Homebrew, if you don't have Homebrew installed you should go ahead and install it,

$ /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Then install the toolchain,

S brew install cmake
S brew tap ArmMbed/homebrew-formulae
S brew install arm-none-eabi-gcc

However after that you can follow the Raspberry Pi instructions to build code for the RP2040. Once the toolchain is
installed there are no differences between macOS and Linux to, so see Section 2.1 and follow the instructions from there
to fetch the Pico SDK and build the "Blink" example.

8.1.2. Using Visual Studio Code

The Visual Studio Code (VSCode) is a cross platform environment and runs on macOS, as well as Linux, and Microsoft
Windows. Go ahead and download the macOS version, unzip it, and drag it to your Applications Folder.

Navigate to Applications and click on the icon to start Visual Studio Code.

8.1.3. Building with CMake Tools

After starting Visual Studio Code you then need to install the CMake Tools extension. Click on the Extensions icon in the
left-hand toolbar (or type tmd + Shift + X), and search for "CMake Tools" and click on the entry in the list, and then click on
the install button.

We now need to set the PICO_SDK_PATH environment variable. Navigate to the pico-examples directory and create a .vscode
directory and add a file called settings.json to tell CMake Tools to location of the Pico SDK.

"cmake.environment": {
"PICO_SDK_PATH":"../../pico-sdk"

]
8.1. Building on Apple macOS 32

http://brew.sh
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools

Getting started with Raspberry Pi Pico

Now go to the File menu and click on "Add Folder to Workspace..." and navigate to pico-examples repo and hit "Okay". The

project will load and you'll (probably) be prompted to choose a compiler, see Figure 12. Select "GCC for arm-none-eabi" for
your compiler.

Figure 12. Prompt to

Settings — Untitled (Workspace)
choose the correct
i [select a Kit for pic
compiler for the
X Search Extension: [Scan for kits]
project. [Unspecified] Un: use)

ENABEED Clang 11.0.3 Using cor

CMake Tools 141 GCC for arm-none-eabi 921 U u arm-no

Extended CMake support
Microsoft Commonly U
Text Editor
Workbench
Window Add ltem
Features

Cmake: Build Args
Additional arguments to pass to CMake when building.

el Cmake: Build Before Run

Search +/ Build the target before running it.

Debug

SCM

ErE D Cmake: Build Directory

Terminal The directory where CMake build files will go.
TR ${workspaceFolder}/build
Problems

Output

i Cmake: Build Environment
No extensions found. T

RECOMMENDED

Environment variables to pass to CMake during build
Remote

Timeline Item Value
Notebook Add ltem
Application
Extensions
CMake Tools conf...
css
Emmet

Cmake: Build Task

Build using tasks.json instead of interal process.

Git Cmake: Build Tool Args

GitHub Additional arguments to pass to the underlying build tool when building
Grunt

DISABLED 0 o Add item

P master O ®0AO (O CMake: [Debugl:Ready 3¢ NoKitSelected &3 Buid [all D

Go ahead and click on the "Build" button (with a cog wheel) in the blue bottom bar of the window. This will create the build
directory and run CMake as we did by hand in Section 3.1, before starting the build itself, see Figure 8.

This will produce ELF, bin, and uf2 targets, you can find these in the hello_world directory inside the newly created build

directory. The UF2 binary can be dragged-and-dropped directly onto a RP2040 board attached to your computer using
USB.

8.1.4. Saying "Hello World"

As we did previously in Chapter 4 you can build the Hello World example with stdio routed either to USB CDC (Serial) or to
UARTO on pins GPO and GP1. No driver installation is necessary if you're building with USB CDC as the target output as its
a class compliant device. You just need to use a Terminal program, e.g. Serial or similar, to connect to the USB serial port.

8.1.4.1. UART output

Alternatively if you want to you want to connect to the Raspberry Pi Pico standard UART to see the output you will need to

connect your Raspberry Pi Pico to your Mac using a USB to UART Serial converter, for example a SparkFun FTDI Basic
board, see Figure 13.

8.1. Building on Apple macOS 33

https://apps.apple.com/us/app/serial/id877615577?mt=12
https://www.sparkfun.com/products/9873

Getting started with Raspberry Pi Pico

Figure 13. Sparkfun
FTDI Basic adaptor
connected to the
Raspberry Pi Pico

So long as you're using a recent version of macQOS like Catalina, the drivers should already be loaded. Otherwise see the
manufacturers' website for FTDI Chip Drivers.

Then you should use a Terminal program, e.g. Serial or similar to connect to the serial port. Serial also includes driver
support.

8.2. Building on MS Windows

Installing the toolchain on Microsoft Windows is somewhat different to other platforms. However once installed building
code for the RP2040 is somewhat similar.

8.2.1. Installing the Toolchain

To build you will need to install some extra tools.
® ARM GCC compiler
® CMake
® Build Tools for Visual Studio 2019
® Python 3
* Git

Download the executable installer for each of these, and then go ahead and install all five packages on to your Windows
machine.

8.2.1.1. Installing ARM GCC Compiler

]
8.2. Building on MS Windows 34

https://www.ftdichip.com/FTDrivers.htm
https://apps.apple.com/us/app/serial/id877615577?mt=12
https://www.decisivetactics.com/support/view?article=compatible-devices
https://www.decisivetactics.com/support/view?article=compatible-devices
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://cmake.org/download/
https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019
https://www.python.org/downloads/windows/
https://git-scm.com/download/win

Getting started with Raspberry Pi Pico

Figure 14. Installing
the needed tools to
your Windows

machine. Ensure that Manage
you register the path Home Share View Application Tools
. v 4 & > ThisPC > Downloads ~ & | Search Downloads
to the compiler as an ~
. . Name Date modified Type Size
environment variable # Quick access
cmake-3.17.0-win6d-x64.msi 4/8/20201:56 AM Windows Installer 24,544 KB
i i [Deskt

so that it accessible “=tep (& gec-arm-none-eabi-9-2019-q4-major-wi.. 4/8/2020 156 AM Application 96,277 KB
from the command Loy » python-3.7.7-amdéd.exe 4 156AM Application 26,170 K8
. 5] Documents , o4 vs_buildtools_732182721.1586263741.exe 4/3/2020 1:56 AM Application 1,356 KB
line. (&) Pictures # b4 vs_community_732182721.1586263741.exe 4/3/20202:03AM Application 1,356 KB

D Music

5 GNU Tools for Arm Embedded Processors 9-2018-gd-major

Completing the GNU Tools for Arm
Embedded Processors
9-2019-g4-major 9 2019 Setup

GNU Tools for Arm Embedded Processors 9-2019-q4-major 9
2019 has been installed on your computer.

Click Finish to dose this wizard.

Show Readme

[Launch geevar bat

Add path to environment varizble
[Add registry information

Cancel

o Type here to search

[P ST (Gl

During installation you should tick the box to register the path to the ARM compiler as an environment variable in the
Windows shell when prompted to do so.

8.2.1.2. Installing CMake

During the installation add CMake to the system PATH for all users when prompted by the installer.

8.2.1.3. Installing Visual Studio Code

Figure 15. Installing
the Build Tools for
Visual Studio 2019.

nstalling — Visual Studio Build Tools 2019 — 16.5.3

Workloads Individual components Language packs Installation locations

Desktop & Mobile (4) Installation details

> MSBuild Tools
v C++ build tools
Included

#4— == build tools
Build Windows desktop applications using the Microsoft
Co= tooset ATL or MFC
v C#+ Build Tools core features
v C#+ 2019 Redistributable Update
@ Mobile Development with .NET Optional
Tools for building cross-platform spplications for 105, _ e)
MSVC V142 - VIS 2019 C++ x64/x86 build tools
Android and Windows using C and F. E o t N ot
™ Windows 10 SDK (10.0.1

[C++ CMake tools for Windows

NET desktop build tools Testing tools core features - Build Tools

Tools for building WPF, Windows Forms, and console [C++ AddressSanitizer (Experimental)
applications using C#, Visual Basic, and F: C++ ATL for latest v142 build tools (x86 & x64
C++ MFC for latest v142 build tools (86 & x64)
C++/CLI support for v142 build tools (14,
Universal Windows Platform build tools C++ Modules for v142 build tools (x64/x86
Provides the tools required to build Universal Windows

C++ Clang tools for Windows (9.0.0 - x64/x86)
Platform applications.

Windows 10 SDK (10.0.17763.0)
Windows 10 SDK (10.0.17134.0)
Windows 10 SDK (10.0.16299.0)

Web & Cloud (4)
MSVC v141 - VS 2017 C++ x64/x86 build tools (.

Location
CAProgram Files (x86)\Microsoft Visual Studio\2019\BuildTools ~ Change.
By continuing, you agree to the license for the Visual Studio edition you selected. We slso offer the ability to download ther Total space required 474 GB

software with Visual Studio. This software is licensed separately, as set out in the 3rd Party Notices or in its accompanying
license. By continuing, you also agree to those licenses,

Type here to search

= E O Leftx

When prompted by the Build Tools for Visual Studio installer you need to install the C++ build tools only.

]
8.2. Building on MS Windows 35

Getting started with Raspberry Pi Pico

8.2.1.4. Installing Python 3

During the installation add Python 3.7 to the system PATH for all users when prompted by their installers. You should
additionally disable the MAX_PATH length when prompted at the end of the Python installation.

Figure 16. Installing
Python 3.7 tick the

"Install for all users"
box under Advanced Host Name: MSEDGEWIN10

Options.

< Manage
Home Share View Application Tools

« > o ¥ ThisPC > Downloads » v|©| | Search Downloads

5 Python 3.7.7 (64-bit) Setup x

Advanced Options
[Install for all users

[Assodiate files with Python (requires the py launcher)

[Create shortcuts for installed applications
[Add Python to environment variables
|4 Precompile standard library

[0 Download debugging symbols
[Download debug binaries (requires VS 2015 or later)

Customize install location
[c\Program Files\Python37

python

for
windows Sinsall || Concel

Gitems 1item selected 255 MB

O Type here to search

Additionally, when installing Python chose 'Customize installation,” click through 'Optional Features' and then under
'Advanced Features' choose to 'Install for all users".

O NoTE

You may have to make a symbolic link so that the Makefile can find Python 3. To do so type emd in the Run Window
next to the Windows Menu to open a Developer Command Prompt Window but select "Run as administrator" in the
right hand pane to open the window with administrative privileges. Then navigate to C:\Program Files\Python37 and
make a symlink.

C:\Program Files\Python37> mklink python3.exe python.exe

This should no longer be necessary. However if your build fails because make can't find your Python installation you
should add the symlink to the executable. That may resolve things.

8.2.1.5. Installing Git

When installing Git you should ensure that you change the default editor away from vim, see Figure 17.

]
8.2. Building on MS Windows 36

Getting started with Raspberry Pi Pico

Figure 17. Installing
Git

Host Name: MSEDGEWIN10
<! Manage
Home Share View Application Tools

« ~ o & ThisPC > Downloads » v o

Search Downloads

Git 2.27.0 Set
st Quick access ! P o

9 Desktop Choosing the default editor used by Git
Which editor would you ke Git to use?
¥ Downloads

[£ Documents

&) Pictures Use Vim (the ubiquitous text editor) as Git's default editor
} Music Use Vim (the ubiquitous text editor) as Git's default editor

46730KB
26,170 K8
B videos

@ OneDrive

I This PC Select other editor as Git
- may set it to some other editor of your choice.

B 3D Objects
[Desktop

[£] Documents
¥ Downloads
D Music :

= Pictures <Back
1B Videos

i Windows 10 (C)

& Network

Sitems 1item selected 456 MB

Q Type here to search

PN (Gl

Ensure you tick the checkbox to allow Git to be used from third-party tools and, unless you have a strong reason
otherwise, when installing Git you should also check the box "Checkout as is, commit as-is", select "Use Windows' default
console window", and "Enable experimental support for pseudo consoles" during the installation process.

8.2.2. Getting the Pico SDK and examples

C:\Users\pico\Downloads> git clone -b master https://github.com/raspberrypi/pico-sdk.git
C:\Users\pico\Downloads> cd pico-sdk

C:\Users\pico\Downloads\pico-sdk> git submodule update --init
C:\Users\pico\Downloads\pico-sdk> cd

C:\Users\pico\Downloads> git clone -b master https://github.com/raspberrypi/pico-examples.git

8.2.3. Building "Hello World" from the Command Line

Go ahead and open a Developer Command Prompt Window from the Windows Menu, by selecting Windows > Visual Studio
2019 > Developer Command Prompt from the menu.

Then set the path to the Pico SDK as follows,
C:\Users\pico\Downloads> setx PICO_SDK_PATH "..\..\pico-sdk"

You now need close your current Command Prompt Window and open a second Command Prompt Window where this
environment variable will now be set correctly before proceeding.

Navigate into the pico-examples folder, and build the 'Hello World' example as follows,

C:\Users\pico\Downloads> cd pico-examples
C:\Users\pico\Downloads\pico-examples> mkdir build
C:\Users\pico\Downloads\pico-examples> cd build
C:\Users\pico\Downloads\pico-examples\build> cmake -G "NMake Makefiles"

8.2. Building on MS Windows 37

Getting started with Raspberry Pi Pico
___|

C:\Users\pico\Downloads\pico-examples\build> nmake

to build the target. This will produce ELF, bin, and uf2 targets, you can find these in the hello_world directory inside your
build directory. The UF2 binary can be dragged-and-dropped directly onto a RP2040 board attached to your computer
using USB.

8.2.4. Building "Hello World" from Visual Studio Code
Now you've installed the toolchain you can install Visual Studio Code and build your projects inside the that environment
rather than from the command line.

Go ahead and download and install Visual Studio Code for Windows. After installation open a Developer Command
Prompt Window from the Windows Menu, by selecting Windows > Visual Studio 2019 > Developer Command Prompt from the
menu. Then type,

C:> code

at the prompt. This will open Visual Studio Code with all the correct environment variables set so that the toolchain is
correctly configured.

@ WARNING

If you start Visual Studio code by clicking on its desktop icon, or directly from the Start Menu then the build
environment will not be correctly configured. Although this can be done manually later in the CMake Tools Settings,
the easiest way to configure the Visual Studio Code environment is just to open it from a Developer Command Prompt
Window where these environmental variables are already set.

We'll now need to install the CMake Tools extension. Click on the Extensions icon in the left-hand toolbar (or type Ctrl +
Shift + X), and search for "CMake Tools" and click on the entry in the list, and then click on the install button.

Then click on the Cog Wheel at the bottom of the navigation bar on the left-hand side of the interface and select
'Settings". Then in the Settings pane click on "Extensions" and the "CMake Tools configuration". Then scroll down to
"Cmake: Configure Environment". Click on "Add Item" and add set the PICO_SDK_PATH to be ..\..\pico-sdk as in Figure 18.

Figure 18. Setting
PICO_SDK_PATH

Environment Variable
in the CMake
Extension

cmake

Add item

Cmake: Configure Environment

oK Cancel

Cmake: Copy Compile Commands

8.2. Building on MS Windows 38

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools

Getting started with Raspberry Pi Pico
___|

Figure 19. Prompt to
configure your project
in Visual Studio Code.

Now go to the File menu and click on "Open Folder" and navigate to pico-examples repo and hit "Okay". You'll be prompted

to configure the project, see Figure 19. Select "GCC for arm-none-eabi" for your compiler.

@ EX Welcome X

> OPEN EDITORS

theme

age on startup

> OUTLINE
> TIMELINE
®0A0 (@ CMake: [Debugl: Ready 3 No Kit Selected @1 Build [al] D

Go ahead and click on the "Build" button (with a cog wheel) in the blue bottom bar of the window. This will create the build
directory and run CMake and build the examples project, including "Hello World".

This will produce ELF, bin, and uf2 targets, you can find these in the hello_world directory inside the newly created build
directory. The UF2 binary can be dragged-and-dropped directly onto a RP2040 board attached to your computer using
USB.

8.2.5. Flashing and Running "Hello World"

Connect the Raspberry Pi Pico to your Raspberry Pi using a micro-USB cable, making sure that you hold down the BOOTSEL
button to force it into USB Mass Storage Mode. The board should automatically appear as a external drive. You can now
drag-and-drop the UF2 binary onto the external drive.

The Raspberry Pi Pico will reboot, and unmount itself as an external drive, and start running the flashed code.

As we did in Chapter 4 you can build the Hello World example with stdio routed either to USB CDC (Serial) or to UARTO on
pins GPO and GP1. No driver installation is necessary if you're building with USB CDC as the target output as its a class
compliant device.

8.2.5.1. UART output

Alternatively if you want to you want to connect to the Raspberry Pi Pico standard UART to see the output you will need to
connect your Raspberry Pi Pico to your Mac using a USB to UART Serial converter, for example a SparkFun FTDI Basic
board, see Figure 13.

___|
8.2. Building on MS Windows 39

https://www.sparkfun.com/products/9873

Getting started with Raspberry Pi Pico

Figure 20. Sparkfun
FTDI Basic adaptor
connected to the
Raspberry Pi Pico

So long as you're using a recent version of Windows 10, the appropriate drivers should already be loaded. Otherwise see
the manufacturers' website for FTDI Chip Drivers.

Then if you don't already have it, download and install PuTTY. Run it, and select "Serial’, enter 115,200 as the baud rate in
the "Speed" box, and the serial port that your UART converter is using. If you don't know this you can find out using the
chgport command,

C:> chgport
COM4 = \Device\ProlificSeriall@
COM5 = \Device\VCPO

this will give you a list of active serial ports. Here the USB to UART Serial converter is on COM5.

O NoOTE

If you have multiple serial devices and can't figure out which one is your UART to USB serial converter, try unplugging
your cable, and running chgport again to see which COM port disappears.

After entering the speed and port, hit the "Open" button and you should see the UART output from the Raspberry Pi Pico in
your Terminal window.

]
8.2. Building on MS Windows 40

https://www.ftdichip.com/FTDrivers.htm
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Getting started with Raspberry Pi Pico

Chapter 9. Using other Integrated
Development Environments

Currently the recommended Integrated Development Environment (IDE) is Visual Studio Code, see Chapter 6. However
other environments can be used with RP2040 and the Raspberry Pi Pico.

9.1. Using Eclipse

Eclipse is a multiplatform Integrated Development environment (IDE), available for x86 Linux, Windows and Mac. In
addition, the latest version is now available for 64-bit ARM systems, and works well on the Raspberry Pi 4/400 range (4GB
and up) running a 64bit OS. The following instructions describe how to set up Eclipse on a linux device for use with the
Raspberry Pi Pico. Instructions for other systems will be broadly similar, although connections to the Raspberry Pi Pico
will vary. See Section 8.2 and Section 8.1 for more details on non-Linux platforms.

9.1.1. Setting up Eclipse for Pico on a Linux machine

Prerequisites:
® Device running a recent version of Linux with at least 4GB of RAM
® 64-bit operating system.
® CMake 3.11 or newer

© NoTE

At present the 64-bit Raspberry Pi OS is still in beta test. The latest beta version can be found here
http://downloads.raspberrypi.org/raspios_arm64/images/. Other 64-bit Linux distributions can also be used but are
untested by us, for example, Ubuntu for Raspberry Pi. Please follow the usual procedure for installing an operating
system image on to your SD card.

If using a Raspberry Pi, you should enable the standard UART by adding the following to config.txt
enable_uart=1

You should also install OpenOCD and the SWD debug system. See Chapter 5 for instructions on how to do this.

9.1.1.1. Installing Eclipse and Eclipse plugins

Install the latest version of Eclipse with Embedded CDT using the standard instructions. If you are running on an ARM
platform, you will need to install an AArch64 (64-bit ARM) version of Eclipse. All versions can be found on the eclipse
website. https://projects.eclipse.org/projects/iot.embed-cdt/downloads

Download the correct file for your system, and extract it. You can then run it by going to the place where it was extracted
and running the 'eclipse’ executable.

./eclipse

The Embedded CDT version of Eclipse includes the C/C++ development kit and the Embedded development kit, so has
everything you need to develop for the Raspberry Pi Pico.

]
9.1. Using Eclipse 41

http://downloads.raspberrypi.org/raspios_arm64/images/
https://projects.eclipse.org/projects/iot.embed-cdt/downloads

Getting started with Raspberry Pi Pico
]

9.1.1.2. Using pico-examples

The standard build system for the Pico environment is CMake. However Eclipse does not use CMake as it has its own
build system, so we need to convert the pico-examples CMake build to an Eclipse project.

® At the same level as the pico-examples folder, create a new folder, for example pico-examples-eclipse
® Change directory to that folder
® Set the path to the PICO_SDK_PATH
o export PICO_SDK_PATH=<wherever>
On the command line enter:
cmake -G"Eclipse (DT4 - Unix Makefiles" -D CMAKE_BUILD_TYPE=Debug ../pico-examples
This will create the Eclipse project files in our pico-examples-eclipse folder, using the source from the original CMake tree.

You can now load your new project files into Eclipse using the Open project From File System option in the File menu.

9.1.1.3. Building

Right click on the project in the project explorer, and select Build. This will build all the examples.

9.1.1.4. OpenOCD

This example uses the OpenOCD system to communicate with the Raspberry Pi Pico. You will need to have provided the
2-wire debug connections from the host device to the Raspberry Pi Pico prior to running the code. On a Raspberry Pi this
can be done via GPIO connections, but on a laptop or desktop device, you will need to use extra hardware for this
connection. One way is to use a second Raspberry Pi Pico running Picoprobe, which is described in Appendix A. More
instructions on the debug connections can be found in Chapter 5.

Once OpenOCD is installed and the correct connection made, Eclipse needs to be set up to talk to OpenOCD when
programs are run. OpenOCD provides a GDB interface to Eclipse, and it is that interface that is used when debugging.

To set up the OpenOCD system, select Preferences from the Window menu.
Click on mMcU arrow to expand the options and click on Global 0pen0CD path.

For the executable, type in “openocd”. For the folder, select the location in the file system where you have cloned the Pico

OpenOCD fork from github.
)) workspace - pica_examples-Debug@pica_examples_eclipse2/[Sour V/spi/bme280_spi/bme280_spi.c - Eclipse Platform x|
Figure 21. Setting the | e edt souce Refactor Navigate Search Project Run Window Help
0CD executable name ~ [& | #][@] 4 Debug Preferences A x@ B ORI ® P
R N PO [. N
and path in Eclipse. ¢ d B S | type filter text Global OpenOCD Path GvDd v § Q g & wE
& Project Explorer %2 » General Configure the location where xPack OpenOCD i installed. T = & B2 0utl 2 ®Buil Hboc = O
5 e, stored within Eclipse. Unless redefined more specifically, the: BR RN ok §
examples (n pico_cxa SN all projects in all workspaces. o dig P8 it
» &5 pico_examples-Debi .
5% pico_examples: DEDUGBPIC ool Update Aftr installing Open0CD updates, restart Eclpse for the dee , ® dig P:intie.t
» Language Servers evaluated and use the Restore Defaults button to configure t 5>) ; ® dig H1 :uinte_t
@ location. § ® dig_H3 uint8_t
Global ARM Toolchains Paths B @ digHonet
Global Build Tools Path Executable ppenocd B o digH2iinties
T o Nrepipoiecsiopenses/) Eowse g o dig Hé s
Workspace ARM Toolchains Paths g © digHsinuet
Workspace Build Tools Path @ compensate_temp(int32.1) - int2
 compensate_pressure(int32._1)

Workspace OpenOCD Path
» Remote Development
» Run/Debug
» Team

%

compensate_humidity(int32_t)
o % cs_select() - void
o3 cs_deselect() void
o write._register(uint8_t, uint_t)
& ° read_registers(uint8_t, uint8_t, 1
e read_compensation_parameters
o ° bme280_read_raw(int32_t, int3
Restore Defaults | & g B @@ # B-S -~ = o
3,2020,12:37:43 PM)

(O %] Cancel Apply and Close -

(21) faultmask (/1): 0x00
(22) control (/2): 6x00

mom

» Terminal

t halted due to debug-request, current mode: Thread
XPSR: 0x01000000 pc: 0x0000012a msp: 0x20041F00 S

9.1. Using Eclipse 42

Getting started with Raspberry Pi Pico
]

Figure 22. Creating a
new Run/Debug
configuration in
Eclipse.

Figure 23. Setting the
executable to debug in
Eclipse.

9.1.1.5. Creating a Run configuration

In order to run or debug code in Eclipse you need to set up a Run Configuration. This sets up all the information needed to
identify the code to run, any parameters, the debugger, source paths and SVD information.

From the Eclipse Run menu, select Run Configurations. To create a debugger configuration, select GDB Open0CD Debugging
option, then select the New Configuration button.

workspace - pico_examples-Debug@pico_examples_eclipse2/[Source directory)/spi/bme280_spi/bme280_spi.c - Eclipse Platform voax
File Edit Soul Debug Configurations v oax
(S]] [create, manage, and rn confuratons Kl
“E s B B wE
& Project Explor EDoc = B
Configure launch settings from this dialog: A
t
te ||| - Press the New Configuration’ button to create a configuration of the selected type.
» S pico_examp)) t
[EIC/C++ Application [# - Press the 'New Prototype’ button to create a launch configuration prototype of the selected type. A
[E1C/C++ Attach to Application {& - Press the 'Export button to export the selected configurations. ¢
EIC/C#+ Postmortem Debugger 8- Press the ‘Duplicate’ button to copy the selected configuration t
C/C++ Remote Application
e PP X - Press the Delete’ button to remove the selected configuration t
@ Debug Adapter Launcher N
1608 Hardware Debugging 7 - Press the Filter' button to configure filtering options |
- Edit or view an existing configuration by selecting it.
(1 - Select launch configuration(s) and then select 'Link Prototype’ menu item to link a prototype. "
[Elpico_examples Debug @ - Select launch configuration(s) and then select 'Unlink Prototype’ menu item to unlink a prototype. t
#Launch Group - Select launch configuration(s) and then select Reset . totype Values' menu item to reset with prototype values. |
& Launch Group (Deprecated) amp(int32.8) it
Config persp \gs from the Perspectives’ preference page. ressure(int32._t)
umidity(int32_t)
d
void
Jint8_t, uint8_t)
e ——
Filter matched 11 of 11 items.
® Close Debug
%

9.1.1.5.1. Setting up the application to run

Because the pico-examples build creates lots of different application executables, you need to select which specific one is
to be run or debugged.

On the Main tab of the Run configuration page, use the Browse option to select the C/C++ applications you wish to run.

The Eclipse build will have created the executables in sub folders of the Eclipse project folder. In our example case this is

+/pico-examples-eclipse/<name of example folder>/<optional name of example subfolder>/executable.elf

So for example, if we running the LED blink example, this can be found at:

+/pico-examples-eclipse/blink/blink.elf

workspace - pico_examples-D _examples_ecl direct /bme280_spi/bme280_spi.c - Eclipse Platform voax

File Edit Source Refactor Navigate Search Project Run Window Help

[R][%][®] [# Debug ~|[@ pico_exemples2-Debug_c H-HE ®~R B B S @ B -B-@ i %0~ ® P~
DN AVERIRSE R Edit Configuration v oax Qg b wE
& Project Explorer % Edit GDB OpenOCD Debugging pico_ I by for Debug 1 Z0ul 8 @Bull ®WDoc = O
Bl W o % §
o uy_ro ki
5 © dig_P6 int16.t
» &S pico_examples-Debug@pic
Launch G Name: | pico_examples2-Debug_ | ® dig_P7 int16.t
Main| 3% Debugger| ® Startup| & Source| 1 Common| & SVD Path © dig P8 int16t
I dig_P9: int16.t
Project: g © dighnunex
pico_examples-Debug@pico_examples_eclipse2 Browse. g e dig_H3 uinta_t
C/C++ A g dig H6 inta_t
E e dig H2:int16.t
= ® dig_H4 int16_t
Varigbles.. | SearchProject.. | Browse.. 19114
® dig H5:int16_t
Build (if required) before launching = @ compensate_temp(int32.t) int:
Build Configuration: | Select Automatically - ® compensate_pressure(int32_t)

£

compensate_humidity(int32_t)
o cs_select() - void
o cs_deselect() - void
o write_register(uint8_t, uint8_t)
& ° read_registers(uint8_t, uint8_t*, |
@ read_compensation_parameters
& ° bme280_read_raw(int32_t*, int3,
I2E8 28~ =0
0,12:37:43 PM)

Disable auto build
Configure Workspace Settings.

Enable auto build
*) Use workspace settings

wom

@ | Duplicate Delete

Cancel

(22) contron (72): vxoy
Cortex-M DNT registers

target halted due to debug-request, current mode: Thread
XPSR: 001000000 pc: 0x0000012a msp: 0x20041f00
Info : dropped 'gdb’ connection

9.1. Using Eclipse

43

Getting started with Raspberry Pi Pico
]

9.1.1.5.2. Setting up the debugger

We are using OpenOCD to talk to the Raspberry Pi Pico, so we need to set this up.

Set openocd in the Executable box and Actual Executable box. We also need to set up OpenOCD to use the Pico specific
configuration, so in the Config options sections add the following. Note you will need to change the path to point to the
location where the Pico version of OpenOCD is installed.

-f interface/raspberrypi-swd.cfg -f target/rp2040.cfg
All other OpenOCD settings should be set to the default values.

The actual debugger used is GDB. This talks to the OpenOCD debugger for the actual communications with the Raspberry
Pi Pico, but provides a standard interface to the IDE.

The particular version of GDB used is ‘gdb-multiarch’, so enter this in the Executable name and Actual Executable fields.

Figure 24. Setting up
the Debugger and Create, manage, and run configurations @ |
0penOCD in Eclipse.

CHE@2EX BV~

| type filter text

Name: ‘ pico_examples-Debug_pico_examples_eclipse Configuration ‘

Main | %5 Debugger & Slanu;ﬂ L Snume]lj gnmmnn] % SVD Palﬂ

£)Build Docker Image 0pen0CD Setup
[E]C/C++ Application v Start Open0CD locally.
[E]C/C++ Container Launcher Executable path / openocd \ Browse... | Variables...
[E]C/C++ Remote Application |
ci Actual executabl | openocd / ‘
i C/C++ Unit
© Docker Compose M{ use the global or workspace preferences pages or the project properties page)
[£16DB Jumper Debugging GDB port ‘ 3333 ‘
~ [£16DB OpenOCD Debugging Tl [aaas |

Tel port 6666
[E1GDB PyOCD Debugging == ‘ L—f

[E160B GEMU Debugging Config options: f interface/raspberrypi-swd.cfg -f target/rp2040.cf
[E1GDB SEGGER J-Link Debuggit

» & Launch Group ' Allocate console for OpenOCD [Allocate console for the telnet connection
Launch over Serial GDB Client Setup
@ Run Docker Image /| Start GDB session
«SystemTap Executable namey’| gdb-multiarch \\ Browse.. | Variables...
Actual execmab:Eg\gdb-rnultl:arch/I ‘
Other options: ‘ ‘
Commands:

set mem inaccessible-by-default off ‘

Filter matched 17 of 19 items Revert Apply

®

9.1.1.5.3. Setting up the SVD plugin

SVD provides a mechanism to view and set peripheral registers on the Pico board. An SVD file provides register locations
and descriptions, and the SVD plugin for Eclipse integrates that functionality in to the Eclipse IDE. The SVD plugin comes
as part of the Embedded development plugins.

Select the SVD path tab on the Launch configuration, and enter the location on the file system where the SVD file is
located. This is usually found in the pico-sdk source tree.

E.g.

-+/pico-sdk/src/rp2040/hardware_regs/rp2040.svd

9.1. Using Eclipse 44

Getting started with Raspberry Pi Pico

Figure 25. Setting the

SVD path in Eclipse. Create, manage, and run configurations @

CEePEX BY~

Name: ‘ pico_examples-Debug_pico_examples_eclipse Configuration |

Ltpefitertet e [Debugger [Startup [Souree [T Commox(: SVD Path

£Build Docker Image SVD file (used by the peripheral registers viewer,
[E1C/C++ Application File paih@i/prujeds/picu,sdk/src/rp?OdO/hardware,regs/m?@ ‘ | Browse... | Variables... ‘
[E1C/C++ Container Launcher -

[E1C/G++ Remote Application
Cij C/C++ Unit
O Docker Compose
[£]GDB Jumper Debugging
~ [E£1GDB Open0CD Debugging
@pico_e
[E1GDB PyOCD Debugging
[E]GDB QEMU Debugging
[E1GDB SEGGER J-Link Debuggit
» @ Launch Group
Launch over Serial

@ Run Docker Image
¥ SystemTap

Filter matched 17 of 19 items Revert Apply

|
|
K
|
|

9.1.1.5.4. Running the Debugger

Once the Run configuration is complete and saved, you can launch immediately using the Run button at the bottom right of
the dialog, or simply Apply the changes and Close the dialog. You can then run the application using the Run Menu Debug
option.

This will set Eclipse in to debug perspective, which will display a multitude of different debug and source code windows,
along with the very useful Peripherals view which uses the SVD data to provide access to peripheral registers. From this
point on this is a standard Eclipse debugging session.

File Edit Source Refactor Navigate Search Project Run Window Help

Figure 26. The Eclipse 1)) [00ms |[mpcocnpisztmgc- 2| ‘= @6 B 8 »smunoL 0S5 & 8-0-Qridqc Jih-f vaecis o NI

3 Debug 2 [Project Explorer 5 [bme280_spi.c © B - Variables 2 % Breakpoints tEEe i § =@
debugger running, CEI ame Type
~ Eicn_examples2 Debug confguaion i e o0 o0
showing some of the - @bmezst.spicf n ropistors via PL..A); gty no2t 0
~ & Thread #1 1 (Name: rp2b0.cx - pressure int32_t 268442449
debugging window i T, S remperae oot s3a76512
. eion s, ol £
available. openccd 2o, L
8 gdb-multiarch B
E“’npsﬂphemlsu L8 § =0
[
%A1 0HD0SCO00 Regiterbiockto conTol ATC

Single-cycle (0 blockyn Provides core-locel and inter-cor

g
SINFO 040000000

Register block for various chip control signals

STBMAN 0x4006C000 Testbench manager. Allows the programmer o know i
BTMER 0640054000 Controls time and alamms\n time is 6 bit value indical
T.usRTO 0x40034000

= Cauan 0640038000

#USBCTALAE 0:50110000 USB FS/LS contoller device registers
No details to disolav for the currnt selection.

@ Console] Poblems © Executables @Debugger Console @ Memory 1t _ @ Terminal G a8 6-§ =«
Monitors & X % (7 & New Renderings...)
0x4003000 0400000000]

04003004 200000000

04003008 200000000

0x4003000C 0400000003

oxa003co10 200000000

& SSPMSC oxi003co14 200000000

9.2. Using CLion

CLion is a multiplatform Integrated Development environment (IDE) from JetBrains, available for Linux, Windows and
Mac. This is a commercial IDE often the choice of professional developers (or those who love JetBrains IDEs) although
there are free or reduce price licenses available. It will run on a Raspberry Pi, however the performance is not ideal, so it is
expected you would be using CLion on your desktop or laptop.

Whilst setting up projects, development and building are a breeze, setting up debug is still not very mainstream at the

9.2. Using CLion 45

Getting started with Raspberry Pi Pico

moment, so be warned.

9.2.1. Setting up CLion

If you are planning to use CLion we assume you either have it installed or can install it from https://www jetbrains.com/
clion/

9.2.1.1. Setting up a project

Here we are using pico-examples as the example project.

To open the pico-examples project, select Open-:- from the File menu, and then navigate to and select the pico-examples
directory you checked out, and press OK.

Once open you'll see something like Figure 27.

x

Fiue 2. A ey

File Edit View Navigate Code Refactor Build Run Tools Git TeamCity Window Help

pico-examples 'Add Configuration... P Gt v v 20 5|8
Project ~ @ I ¥ & — & README.md

5 bicooompes —Jdeupicopicooromple:NEIEIRNTI za@@

il External Libraries

> % Scratches and Consoles PICO SDK Examples

opened CLion pico-
examples project.

= Structure | IF Project |

Getting started

See in htpsgithub, dk for getting started information.

aseqeieq (i) 15OH2j0wRy fi O

F Pull Requests.

Minimal Examples

App Description Link to prebuilt UF2
hello_world The obligatory Hello World program for Pico (USB and Serial versions) hitps:/pico.raspberrypi.org/uf2/hello_world.uf2

blink Blink an LED on and off. hitps:/ipico.raspbertypi.org/ut2/blink.uf2

ADC

App Description

CMake @ Debug & -
P Jhome/granan/ . ocal/share/Jet8rains/ i 81 i g&t ~DCHAKE_BUTLD_TYPE=Debug -G "CodeBlocks - Unix Makefiles" /
CHake Error at pico_sdi_inport.cnake:ds (message):
PICO SDK location was not specified. Please set PICO_SOKPATH or set
PICO_SDK_FETCH_FRON_GIT to on to fetch from git.
Call Stack (most recent call first):
CHakeLists.txt:4 (include)

[RTIE

- o

-- Configuring incomplete, errors occurred!

[Failed to reload]

* Favorites

ayew

© Problems I Git B Terminal i@ TeamCity | A CMake i TODO QeventLog
LF UTF-8 4spaces V pre_release m € ++

o

Notice at the bottom that CLion attempted to load the CMake project, but there was an error; namely that we hadn't
specified PICO_SDK_PATH

9.2.1.1.1. Configuring CMake Profiles

Select Settings - from the File menu, and then navigate to and select 'CMake' under Build, Execution, Deployment.

You can set the environment variable PICO_SDK_PATH under Environment: as in Figure 28, or you can set it as
-DPICO_SDK_PATH=xxx under CMake options:. These are just like the environment variables or command line args when calling
cmake from the command line, so this is where you'd specify CMake settings such as PIC0_BOARD, PICO_TOOLCHAIN_PATH etc.

9.2. Using CLion 46

https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/

Getting started with Raspberry Pi Pico
]

Figure 28. Configuring
a CMake profile in
CLion.

You can have as

Build, Execution, Deployment » CMake For current project Reset

> Appearance & Behavior Reload CMake project on editing CMakeLists.txt

External changes always trigger project reload. For example, VCS update

Keymap
> Editor Profiles
Plugins Profileis anamed set of build options. For example, create separate profiles for Debug and Release builds and switch between them

> Version Control when needed.

~ Build, Execution, Deployment + - @ Enable profile
Toolchains A Debug Name: Debug
CTIEHaDaEEe Build type: Debug ~ | corresponds to CMAKE BUILD_TYPE
Custom Build Targets Toolchain: Use: Default ~ | Manage toolchains...

Makefile
» Build Tool CMake options: -DCMAKE BUILD TYPE=Debug

uild Tools

N Use -DVAR_NAME=value to set variables, -G to specifya custom generator.

2 Debuggen All cMake options »

Python Debugger

R —— Build directory: | cmake-build-debug
> Deployment Buildoptions: -~ -7 9

> console Arguments after ' are passed to the build, other arguments are
— CMake command line parameters. Default options depend on the
toolchain’s environment.

> Dynamic Analysis Tools

Envi PICO_SDK_PATH=/home/graham/dev/pico/pico-sdk

Embedded Development
Additional variables For CMake generation and build. The values are

Required Plugins added to system and toolchain variables.

Swift
> Languages & Frameworks

2 BT cencel | Apply

many CMake profiles as you like with different settings. You probably want to add a Release build by

hitting the + button, and then filling in the PICO_SDK_PATH again, or by hitting the copy button two to the right, and fixing
the name and settings (see Figure 29)

Figure 29. Configuring
a second CMake
Profile in CLion.

o Build, Execution, Deployment > CMake For current project Reset
> Appearance & Behavior Reload cMake project on editing CMakeLists.txt
External changes always trigger project reload. For example, V'CS update

Keymap
> Editor Profiles
Plugins Profile s a named set of build options. For example, create separate profiles for Debug and Release builds and switch between them

> Version Control when needed.

~ Build, Execution, Deployment + - B a Enable profile
Toolchains A Debug Name: Release
Compilation Database Build type: Release | Corresponds to CMAKE_BUILD TYPE
Custom Build Targets Toolchain: Use: Default ~ | Manage toolchains...

Makefile
CMake options: -DCMAKE BUILD TYPE=Release
b Use -DVAR_NAME=value to set variables, -G to specify a custom generator.
> Debugger All cMake options »
Python Debugger

> Build Tools

e —— Build directory: | cmake-build-release
> Deployment Buildoptions: -~ -j 9
> console Arguments after ‘' are passed to the build, other arguments are
CMake command line parameters. Default options depend on the

Coverage
g toolchain's environment.

> Dynamic Analysis Tools
Embedded Development Environment: | PICO_SDK_PATH=/home/graham/dev/pico/pico-sdk

Additional variables for CMake generation and build. The values are

e added to system and toelchain variables.

Swift

> Languages & Frameworks

2 BT cencel | apply

After pressing OK, you'll see something like Figure 30. Note that there are two tabs for the two profiles (Debug and Release)

at the bottom of the window. In this case Release is selected, and you can see that the CMake setup was successful.

9.2. Using CLion

a7

Getting started with Raspberry Pi Pico

Figure 30. Configuring plco_examples - README.md

o ®
a second CMake File Edit View Navigate Code Refactor Build Run Tools Git TeamCity Window Help
- B plco-examples ES adc_console|Debug ~ | b % G G % # Gt v v A BQ
profile in CLion.) - T
§ = project - © I = % — ZREADMEmd =
£ > tnpico-examples HL HD @ =am o g
™ > lllExternal Libraries S
o > 7oscratches and Consoles PICO SDK Examples z
@ H
i) g
Getting started o

F Pull Requests.

Minimal Examples

App Description

hello_world The obligatory Hello World program for Pico (USB and Serial versions) hitps:/pico.raspberrypi.org/uf2/hello_world.uf2

blink Blink an LED on and off, hitps:/ipico.raspberrypi.org/uf2/blink.uf2
ADC
App Description
CMake: A Debug A Release & -
s -~ Found assembler: /usr/bin/arm-none-eabi-gec
Defaulting PICO target board to pico since not specified.
Using board configuration fron 9 pico/p: incly pico.h
2 -- Found Python3: /usr/bin/python3.8 (found version "3.8.5") found components: Interpreter
% 2 Tinyss avaitavte at ico/pi b/t 1/rp2848; adding USB support.
N -~ Found Doxygen: /usr/bin/doxygen (found version "1.8.17") found components: doxygen dot
5 | ELF2UF2 will need to be built
PIOASH will need to be built
-- configuring done
-~ Generating done
] - Build files have been written to: o bico/p » ta-retease
8 [Finished] 2
* H
© Problems | Git B Terminal [TeamCity | A CMake | = TODO Qeventlog

o

See in httpsigithub. dk for getting started information.

Link to prebuilt UF2

181 LF UTF-8 4spaces U pre release @ -

9.2.1.1.2. Running a build

Now we can choose to build one or more targets. For example you can navigate to the drop down selector in the middle
of the toolbar, and select or starting typing hello_usb; then press the tool icon to its left to build (see Figure 31).

Alternatively you can do a full build of all targets or other types of build from the Build menu.

FlgUIE 31 pico_examples - stdioc o ®
: Eile Edit View Navigate Code Refactor Build Run Iools Git TeamCity Window Help
hello usb pico-sdk src rp2_common pico_stdio = £ stdio.c A [Fhellousb|Debug ~ > & G G H % .. Gt v v 20 b BEQ
- % Project ~ @ I ¥ & — &hello_usbc & stdio.c H
successfully built. £ = plco-examples sxs A v i
™ > il External Libraries g
o Scratches and Consoles o
L]
] 257 PICO_STOTO_UART ;
H
? #endif
i
#if PICO_STOIO_USB
#include "pico/stdio_usb.h"
enar
#4 PICO_STDIO_SEMIHOSTING
senaif
static stafo_driver_t sarivers;
static stalo_driver_t sfilter;
#3¢ PICO_STOOUT_HUTEX
avto_init_nutex(print_mutex);
bool stdout_serdalize beginQ) {
int core_nun = aet_core_nun():
Messages: o -
[109%] 8uitaing ©
[168%] Building C abject hello_s
[160%] Building C abject hello_s
= [168%] Building C object hell
™ [168%] Building C object hel
=
| (1087 susiaing ¢ obsect net
& [108%] suitaing ¢ object nel
§ (2061 Building C object hellos ranan/dev/pic b_device_snuneration/rp2848_usb_device_enuneration.
[168%] Linking XX executable
3 [100%] Built target hello_usb
2 putla fintshed ,
* 5

OProblems | Gt M Terminal A CMake i@ TeamCity | & Messages = TODO

QEventLog

27:1 LF UTF-8 4spaces Chello_usb|Debug P pre release m & ++ ©

Note that the drop down selector lets you choose both the target you want to build and a CMake profile to use (in this

case one of Debug or Release)

Another thing you'll notice Figure 31 shows is that in the bottom status bar, you can see hello_usb and Debug again. These
are showing you the target and CMake profile being used to control syntax highlighting etc. in the editor (This was auto
selected when you chose hello_usb before). You can visually see in the stdio.c file that has been opened by the user, that
PICO_STDIO_USB is set, but PICO_STDIO_UART is not (which are part of the configuration of hello_usb). Build time per

binary configuration of libraries is heavily used within the Pico SDK, so this is a very nice feature.

9.2. Using CLion

48

Getting started with Raspberry Pi Pico
]

Figure 32. Locating

the hello_usb build
artifacts

9.2.1.1.3. Build Artifacts

The build artifacts are located under cmake-build-<profile> under the project root (see Figure 32). In this case this is the
cmake-build-debug directory.

The UF2 file can be copied onto an RP2040 device in BOOTSEL mode, or the ELF can be used for debugging.

pico_examples - stdioc o ®
Eile Edit View Navigate Code Refactor Build Run Iools Git TeamCity Window Help
pico-examples = cmake-build-debug hello_world usb & hello_usb.uf2 A [hello_usb|Debug ~ | > & 6 G % % . Gt v v 205 EQ
Project ~ © I T @ — Zhelousbe & stdioc =
& ™ pico-examples -/dev/pico/pico-examples . 83 A v g
B madc « sverry Pi (Trading) Lt H
S > blink H
> dlocks -
> s cmake =
% v mcmakebuilddebug sinctode B g
. > madc g
H 7 blnk £4 PICO_STOTO_UART #
g > maclocks
E > mmcmake -
E > B Chakefiles
> W divider _STOT0_USE
> mdma e "pico/stdio_usb.h"
> melf2uf2
> maflash
> B generated #4¢ PICO_STOIO_SEMIHOSTING
> mgpio
~ M hello_world senais
> B CMakeFiles
> M serial Static staio_driver_t sdrivers;
* musb Static stalo_driver_t *filter;
> B CMakefiles
A cmake_install.cmake 1/17/21,8 #1F PICO_STOOUT_MUTEX
2 hello_usb.bin 118/ auto_init_nutex(print_nutex);
hello_usb.dis 1/18/21,513PM,51
R baol stdout_serialize_begin®) {
- int core_nun = get_core_nun();
sowner)) {
4f (owner == core_num) {
return false:
A cmake_installcmake 1/17/21, 8431
Messages: _Build ® -
[208%] 5uitaing © object het device.c.ob)
[266%] 8uilding € object heu endor_device.c.obj
[268%] 8uilging € object heu s
[166%] Building C object hel " v r _#ifo.c.obj
= | [168x] Building C object hello_world/usb/Cha /hetlo_usb.air, raham re/rp2_conn et _usb_device_enuneration/rp2840_usb_device_enuneration.
oy [168%] Linking CXX executable hello_usb.e!
g o (308 susle target netlo_usp
£ 5 suno finishes 3
* 3
©Problems |+ Git @ Terminal A CMake i@ TeamCity | & Messages | = T0DO Qeventiog
0 Build finished in 2 sec, 607 ms (10 minutes ago) 27:1 LF UTF-8 4spaces Chello_usb|Debug pre release w @ -+

9.3. Other Environments

There are many development environments available, and we cannot describe all of them here, but you will be able to use
many of them with the Pico SDK. There are a number of things needed by your IDE that will make Raspberry Pi Pico
support possible:

® CMake integration
® GDB support with remote options
® SVD. Not essential but makes reading peripheral status much easier

® Optional ARM embedded development plugin. These types of plugin often make support much easier.

9.3.1. Using openocd-svd

The openocd-svd tool is a Python-based GUI utility that gives you access peripheral registers of ARM MCUs via combination
of OpenOCD and CMSIS-SVD.

To install it you should first install the dependencies,

$ sudo apt install python3-pyqt5
$ pip3 install -U cmsus-svd

before cloning the openocd-svd git repository.

$ cd ~/pico
$ git clone https://github.com/esynr3z/openocd-svd.git

9.3. Other Environments 49

https://github.com/esynr3z/openocd-svd

Getting started with Raspberry Pi Pico
]

Ensuring your Raspberry Pi 4 and Raspberry Pi Pico are correctly wired together, we can attach OpenOCD to the chip, via
the swd and rp2040 configs.

$ openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

This OpenOCD terminal needs to be left open. So go ahead and open another terminal, in this one we'll attach a gdb
instance to OpenOCD.

Navigate to your project, and start gdb,

$ cd ~/pico/test
$ gdb-multiarch test.elf

Connect GDB to OpenOCD,

(gdb) target remote localhost:3333

and load it into flash, and start it running.

(gdb) load
(gdb) monitor reset init
(gdb) continue

With both openocd and gdb running, open a third window and start openocd-svd pointing it to the SVD file in the Pico SDK.

$ python3 openocd_svd.py /home/pi/pico/pico-sdk/src/rp2040/hardware_regs/rp2040.svd

This will open the openocd-svd window. Now go to the File menu and click on "Connect OpenOCD" to connect via telnet to
the running openocd instance.

This will allow you to inspect the registers of the code running on your Raspberry Pi Pico, see Figure 33.

]
9.3. Other Environments 50

Getting started with Raspberry Pi Pico

Figure 33. OpenOCD
SVD running and
connected to the
Raspberry Pi Pico.

pico_b0.svd - openocd-svd

File View Options Help

No description R* Read.all :
Register Value ‘
UARTDR 0x00000000 Riw
UARTRSR 0x00000000 Rw
@ UARTFR 0x00000197 RW
@ UARTILPR 0x00000000 R'W
UARTIBRD 0x00000043 Rw
UARTFBRD 0x00000034 RwW
= UARTLCR_H 0x00000070 RwW
@ UARTCR 0x00000301 RW
+ UARTIFLS 0x00000012 RW
UARTIMSC 0x00000000 RwW
= UARTRIS 0x00000000 Rw
@ UARTMIS 0x00000000 RW
UARTICR 0x00000000 R'W
UARTDMACR 0x00000003 Riw
UARTPERIPHIDO 0x000000M RwW
@ UARTPERIPHID1 0x00000010 Rw
UARTPERIPHID2 0x00000034 RwW
UARTPERIPHID3 [0x00000000 Rw
UARTPCELLIDO 0x0000000d RwW
= UARTPCELLID1 0x000000f0 RwW

UARTO B | UART1 £

Read UARTO.UARTPCELLID3 @ 0x40CConnected: rp2b0.corel | running | OXOOOO00EE

|
9.3. Other Environments 51

Getting started with Raspberry Pi Pico

Appendix A: Using Picoprobe

It is possible to use one Raspberry Pi Pico to debug another Raspberry Pi Pico. This is possible via picoprobe, an
application that allows a Raspberry Pi Pico to act as a USB — SWD and UART converter. This makes it easy to use a
Raspberry Pi Pico on non Raspberry Pi platforms such as Windows, Mac, and Linux computers where you don't have
GPIOs to connect to.

A.1. Build OpenOCD

For picoprobe to work, you need to build openocd with the picoprobe driver enabled.

A.1.1. Linux

$ cd ~/pico

S sudo apt install automake autoconf build-essential texinfo libtool libftdi-dev libusb-1.0-8-
dev

$ git clone https://github.com/raspberrypi/openocd.git --branch picoprobe --depth=1

$ cd openocd

$./bootstrap

$./configure --enable-picoprobe @

$ make -j4

$ sudo make install

1. If you are building on a Raspberry Pi you can also pass --enable-sysfsgpio --enable-bem2835gpio to allow bitbanging
SWD via the GPIO pins.

A.1.2. Windows

To make building OpenOCD as easy as possible, we will use MSYS2. To quote their website: "MSYS2 is a collection of
tools and libraries providing you with an easy-to-use environment for building, installing and running native Windows
software."

Download and run the installer from https://www.msys2.org/.

Start by updating the package database and core system packages with:

pacman -Syu

]
A.1. Build OpenOCD 52

https://www.msys2.org/

Getting started with Raspberry Pi Pico

14.44 MiB
37 MiB

: Proceed with 1

If MSYS2 closes, start it again (making sure you select the 64-bit version) and run

pacman -Su

to finish the update.

Install required dependencies:

pacman -S mingw-w64-x86_64-toolchain git make libtool pkg-config autoconf automake texinfo
mingw-w64-x86_64-1ibusb

Pick all when installing the mingw-w64-x86_64 toolchain by pressing enter.

M|

nnpthre
-4

4 —winpthres:

i

Close MSYS2 and reopen the 64-bit version to make sure the environment picks up GCC.

$ cd ~/pico

$ git clone https://github.com/raspberrypi/openocd.git --branch picoprobe --depth=1
$ cd openocd

$./bootstrap

___|
A.1. Build OpenOCD 53

Getting started with Raspberry Pi Pico
]

$./configure --enable-picoprobe --disable-werror @
S make -j4

1. Unfortunately disable-werror is needed because not everything compiles cleanly on Windows

Finally run OpenOCD to check it has built correctly. Expect it to error out because no configuration options have been
passed.

$ src/openocd.exe
Open On-Chip Debugger 0.10.0+dev-gc231502-dirty (20206-10-14-14:37)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
embedded:startup.tcl:56: Error: Can't find openocd.cfg
in procedure 'script’
at file "embedded:startup.tcl”, line 56
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Error: Debug Adapter has to be specified, see "interface" command
embedded:startup.tcl:56: Error:
in procedure 'script'
at file "embedded:startup.tcl”, line 56

A.1.3. Mac

Install brew if needed

/bin/bash -c¢ "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

Install dependencies

brew install libtool automake libusb wget pkg-config gcc texinfo @

1. The version of texinfo shipped with OSX is below the version required to build OpenOCD docs

$ cd ~/pico

$ git clone https://github.com/raspberrypi/openocd.git --branch picoprobe --depth=1
$ cd openocd

$ export PATH="/usr/local/opt/texinfo/bin:SPATH" @

$./bootstrap

$./configure --enable-picoprobe --disable-werror @

S make -j4

1. Put newer version of texinfo on the path
2. Unfortunately disable-werror is needed because not everything compiles cleanly on OSX

Check OpenOCD runs. Expect it to error out because no configuration options have been passed.

]
A.1. Build OpenOCD 54

Getting started with Raspberry Pi Pico
]

Figure 34. Wiring
between PicoA (left)
and PicoB (right)
configuting Pico A as
a debugger. Note that
if Pico B is a USB Host
then you'd want to
hook VBUS up to VBUS
so it can provide 5V
instead of VSYS to
VSYS.

$ src/openocd
Open On-Chip Debugger 0.10.0+dev-gc231502-dirty (2026-10-15-07:48)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
embedded:startup.tcl:56: Error: Can't find openocd.cfg
in procedure 'script’
at file "embedded:startup.tcl”, line 56
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Error: Debug Adapter has to be specified, see "interface" command
embedded:startup.tcl:56: Error:
in procedure 'script’
at file "embedded:startup.tcl”, line 56

A.2. Build and flash picoprobe

These build instructions assume you are running on Linux. Alternatively, you can get a UF2 of picoprobe from rptl.io/pico-
picoprobe.

cd ~/pico

git clone https://github.com/raspberrypi/picoprobe.git
cd picoprobe

mkdir build

cd build

cmake ..

make -j4

Boot the Raspberry Pi Pico you would like to act as a debugger with the BOOTSEL button pressed and drag on picoprobe.uf2.

A.3. Picoprobe Wiring

—_ —_ +_ +_
I —0 = -
o N . <o
HI : B
- +_ - +_

]
A.2. Build and flash picoprobe 55

Getting started with Raspberry Pi Pico

The wiring loom between the two Pico boards is shown in Figure 34.

Pico A GND -> Pico B GND

Pico A GP2 -> Pico B SWCLK

Pico A GP3 -> Pico B SWDIO

Pico A GP4/UART1 TX -> Pico B GP1/UART@ RX
Pico A GP5/UART1 RX -> Pico B GPB/UART@ TX

Optionally, to power Pico A from Pico B you should also wire,

Pico A VSYS -> Pico B VSYS

O IMPORTANT

One slight caveat on Figure 34 is that if Pico B is a USB Host then you'd want to hook VBUS up to VBUS so it can
provide 5V instead of VSYS to VSYS.

A.4. Install Picoprobe driver (only needed on Windows)

The Picoprobe device has two usb interfaces:

1. A class compliant CDC UART (serial port), which means it works on Windows out of the box

2. A vendor specific interface for SWD probe data. This means we need to install a driver to make it work.
We will use Zadig (http://zadig.akeo.ie) for this.
Download and run Zadig.

Select Picoprobe (Interface 2) from the dropdown box. Select libusb-win32 as the driver.

E Zadig — =
Device Options Help

Picoprobe (Interface 2) v | Dedit
Driver | (NONE) | $ | libush-win32 (v1.2.6.0) |% More Information
WinUSB flibusb)
o (22 [(2] e
3 Install Driver hd libusbk
WD = E WinUSE (Microsoft)

Mo new version of Zadig was found Zadig 2.5.730

Then select install driver.

A.4. Install Picoprobe driver (only needed on Windows) 56

http://zadig.akeo.ie

Getting started with Raspberry Pi Pico

E Zadig — X
Device Options Help

Picoprobe (Interface 2) v [edit

Driver |Iibusb0 (v1.2.6.0) | =» | libush-win32 (v1.2.6.0) % More Information
WinUSB (ibusb)

USE ID IE libush-win32

. Reinstall Driver hd libusbK
WEEIDE @ WinlJSB (Microsoft)
Driver Installation: SUCCESS Zadig 2.5.730

A.5. Using Picoprobe’s UART
A.5.1. Linux

sudo minicom -D /dev/ttyACMo@ -b 115200

A.5.2. Windows

Download and install PuTTY https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Open Device Manager and locate Picoprobe’s COM port number. In this example it is COM7.

Device Manager - m} x

File Action View Help
e @ EHHE FEX®

~ % LIAMDESKTOP -
> iq Audio inputs and outputs
> 3 Bluetooth
> CATC Analyzers

> E Computer

b Disk drives

» [Display adapters

> B Firmware

> Human Interface Devices

» @ IDE ATAJATAPI controllers

> u Imaging devices

> Keyboards

> § libusb-win32 devices

> 8 Mice and other pointing devices

» O Monitors

> ? Network adapters

> § Oculus VR Devices

> B Other devices

~ f@ Ports (COM &L LPT)
i Communications Port (COM1)
ﬁ Standard Serial over Bluetooth link (COM3)
ﬁ Standard Serial over Bluetooth link (COME)
f§ USB Serial Device (COMT)

» = Print queues

> a Processors

Open PUTTY. Select Serial under connection type. Then type the name of your COM port along with 115200 as the speed.

]
A.5. Using Picoprobe’s UART 57

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Getting started with Raspberry Pi Pico

ﬁ PuTTY Configuration ? >
Categany:

=g S_essiu:nn Basic options for your PuTTY session
- Logging Specify the destination you want to connect to
=I- Terminal Serial | Sneed

- Keyboard eria 1|ge pee

. Bel |COM7 |[115200 |

- Features Connection type:
= Window (CJRaw (O Telnet (O Rlogin () SSH (@) Serial

f-‘-.ppea.rance Load, save or delete a stored session

- Behaviour

... Translation Saved Sessions

- Selection | |

C':'"D!"rs Default Settings Load
=I- Connection AGWPort Forward

. Data Admin Gateway Save

- Py =

. Telnet Delete

- Rlogin

+- S5H

""" Sefial Close window on exit:

(JAways () Never (@ Only on clean exit
About Help Cpen Cancel

Select Open to start the serial console. You are now ready to run your application!

EP COMT - PuTTY - | X

A.5.3. Mac

brew install minicom
minicom -D /dev/tty.usbmodem1234561 -b 115200

A.5. Using Picoprobe’s UART 58

Getting started with Raspberry Pi Pico

A.6. Using Picoprobe with OpenOCD

Same for all platforms
src/openocd -f interface/picobrobe.cfg -f target/rp2046.cfg -s tcl
Connect GDB as you usually would with

target remote localhost:3333

]
A.6. Using Picoprobe with OpenOCD 59

Getting started with Raspberry Pi Pico

Appendix B: Using Picotool

It is possible to embed information into a Raspberry Pi Pico binary which can be retrieved using a command line utility
called picotool.

B.1. Getting picotool

The picotool utility is in a separate repository to the Pico SDK. You will need to clone and build it if you haven't ran the
pico-setup script.

$ git clone -b master https://github.com/raspberrypi/picotool.git
$ cd picotool

You will also need to install 1ibusb if it is not already installed,
$ sudo apt-get install libusb-1.0-0-dev

O NoTE

If you are building picotool on macOS you can install 1ibusb using Homebrew,
$ brew install libusb

Whbhile if you are buiding on Microsoft Windows you can download and install a Windows binary of 1ibusb directly from
the libusb.info site.

B.2. Building picotool

Building picotool can be done as follows,

mkdir build

cd build

export PICO_SDK_PATH=~/pico/pico-sdk
cmake ../

make

wr v v v v

this will generate a picotool command-line binary in build/picotool directory.

B.1. Getting picotool 60

https://libusb.info/

Getting started with Raspberry Pi Pico

O NoTE

If you are building on Microsoft Windows you should invoke CMake as follows,

C:\Users\pico\picotool> mkdir build

C:\Users\pico\picotool> cd build
C:\Users\pico\picotool\build> cmake .. -G "NMake Makefiles"
C:\Users\pico\picotool\build> nmake

B.3. Using picotool

The picotool binary includes command line help function,

$ picotool help
PICOTOOL :
Tool for interacting with a RP2040 device in BOOTSEL mode, or with a RP2048 binary

SYNOPSYS:
picotool info [-b] [-p] [-d] [-1] [-a] [--bus <bus>] [--address <addr>]
picotool info [-b] [-p] [-d] [-1] [-a] <filename> [-t <type>]
picotool load [-v] [-r] <filename> [-t <type>] [--bus <bus>] [--address <addr>]
picotool save [-p] [--bus <bus>] [--address <addr>] <filename> [-t <type>]
picotool save -a [--bus <bus>] [--address <addr>] <filename> [-t <type>]
picotool save -r <from> <to> [--bus <bus>] [--address <addr>] <filename> [-t <type>]
picotool verify [--bus <bus>] [--address <addr>] <filename> [-t <type>] [-r <from> <to>]
picotool reboot [-a] [-u] [--bus <bus>] [--address <addr>]
picotool help [<cmd>]

COMMANDS :
info Display information from the target device(s) or file.
Without any arguments, this will display basic information for all connected
RP2040 devices in
BOOTSEL mode
load Load the program / memory range stored in a file onto the device.
save Save the program / memory stored in flash on the device to a file.
verify Check that the device contents match those in the file.
reboot Reboot the device
help Show general help or help for a specific command

Use "picotool help <cmd>" for more info

O NoOTE

The majority of commands require an RP2040 device in BOOTSEL mode to be connected.

B.3.1. Display information

So there is now Binary Information support in the SDK which allows for easily storing compact information that picotool
can find (See Section B.4 below). The info command is for reading this information.

]
B.3. Using picotool 61

Getting started with Raspberry Pi Pico

© IMPORTANT

since picotool

The information can be either read from one or more connected RP2040 devices in BOOTSEL mode, or from a file. This
file can be an ELF, a UF2 or a BIN file.

S picotool help info
INFO:

Display information from the target device(s) or file.

Without any arguments, this will display basic information for all connected RP2040 devices
in USB boot

mode

SYNOPSYS:
picotool info [-b] [-p] [-d] [-1] [-a] [--bus <bus>] [--address <addr>]
picotool info [-b] [-p] [-d] [-1] [-a] <filename> [-t <type>]

OPTIONS:
Information to display
-b, --basic
Include basic information. This is the default

-p, --pins

Include pin information
-d, --device

Include device information
-1, --build

Include build attributes
-a, --all

Include all information

TARGET SELECTION:
To target one or more connected RP2040 device(s) in BOOTSEL mode (the default)
--bus <bus>
Filter devices by USB bus number
--address <addr>
Filter devices by USB device address
To target a file
<filename>
The file name
-t <type>
Specify file type (uf2 | elf | bin) explicitly, ignoring file extension

For example connect your Raspberry Pi Pico to your computer us mass storage mode, by pressing and holding the
BOOTSEL button before plugging it into the USB. Then open up a Terminal window and type,

$ sudo picotool info
Program Information

name : hello_world
features: stdout to UART

or,

$ sudo picotool info -a
Program Information
name : hello_world

B.3. Using picotool 62

Getting started with Raspberry Pi Pico
]

features: stdout to UART
binary start: ©x10000000
binary end: 0x1000606C

Fixed Pin Information
20: UART1 TX
21: UART1 RX

Build Information
build date: Dec 31 2020
build attributes: Debug build

Device Information
flash size: 2048K
ROM version: 2

for more information. Alternatively you can jut get information on the pins used as follows,

$ sudo picotool info -bp
Program Information

name : hello_world
features: stdout to UART

Fixed Pin Information

20: UART1 TX
21: UART1 RX

The tool can also be used on binaries still on your local filesystem,

S picotool info -a lcd_1602_i2c.uf2
File 1lcd_16062_i2c.uf2:

Program Information

name : lcd_1602_1i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/1lcd_1602_i2c
binary start: ©0x10000000

binary end: 0x10003c1c

Fixed Pin Information
4: T12CO SDA
5: I2Ce SCL

Build Information
build date: Dec 31 2020

B.3.2. Save the program

Save allows you to save a range of memory or a program or the whole of flash from the device to a BIN file or a UF2 file.

S picotool help save
SAVE :
Save the program / memory stored in flash on the device to a file.

SYNOPSYS:
picotool save [-p] [--bus <bus>] [--address <addr>] <filename> [-t <type>]

]
B.3. Using picotool 63

Getting started with Raspberry Pi Pico
]

picotool save -a [--bus <bus>] [--address <addr>] <filename> [-t <type>]
picotool save -r <from> <to> [--bus <bus>] [--address <addr>] <filename> [-t <type>]

OPTIONS:
Selection of data to save
-p, --program
Save the installed program only. This is the default
-a, --all
Save all of flash memory
-r, --range
Save a range of memory; note that the range is expanded to 256 byte boundaries
<from>

The lower address bound in hex
<to>
The upper address bound in hex
Source device selection
--bus <bus>
Filter devices by USB bus number
--address <addr>
Filter devices by USB device address
File to save to
<filename>
The file name
-t <type>
Specify file type (uf2 | elf | bin) explicitly, ignoring file extension

For example,

$ sudo picotool info

Program Information

name: lcd_1602_i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/1lcd_16062_i2c
$ picotool save spoon.uf2

Saving file: [============z=====z===z==z===z=====] 100%

Wrote 51200 bytes to spoon.uf2

$ picotool info spoon.uf2

File spoon.uf2:

Program Information

name: lcd_1602_i2c

web site: https://github.com/raspberrypi/pico-examples/tree/HEAD/i2c/1lcd_1602_i2c

B.4. Binary Information

Binary information is machine locatable and generally machine consumable. | say generally because anyone can include
any information, and we can tell it from ours, but it is up to them whether they make their data self describing.

B.4.1. Basic information

This information is really handy when you pick up a Pico and don’t know what is on it!
Basic information includes
® program name

® program description

]
B.4. Binary Information 64

Getting started with Raspberry Pi Pico

® program version string
® program build date

® program url

® program end address

® program features, this is a list built from individual strings in the binary, that can be displayed (e.g. we will have one
for UART stdio and one for USB stdio) in the SDK

® build attributes, this is a similar list of strings, for things pertaining to the binary itself (e.g. Debug Build)

B.4.2. Pins

This is certainly handy when you have an execute called hello_world.elf but you forgot what RP2040-based board it was
built for as different boards may have different pins broken out.

Static (fixed) pin assignments can be recorded in the binary in very compact form:

$ picotool info --pins sprite_demo.elf
File sprite_demo.elf:

Fixed Pin Information
0-4: Red 0-4

6-10: Green 0-4
11-15: Blue 0-4

16: HSync

17: VSync

18: Display Enable
19: Pixel Clock
20: UART1 TX

21: UART1 RX

B.4.3. Including Binary information

Binary information is declared in the program by macros; for the previous example:

$ picotool info --pins sprite_demo.elf
File sprite_demo.elf:

Fixed Pin Information
0-4: Red 0-4

6-10: Green 0-4
11-15: Blue 0-4

16: HSync

17: VSync

18: Display Enable
19: Pixel Clock
20: UART1 TX

21: UART1 RX

There is one line in the setup_default_uart function:

B.4. Binary Information 65

Getting started with Raspberry Pi Pico
]

bi_decl_if_func_used(bi_2pins_with_func(PICO_DEFAULT_UART_RX_PIN, PICO_DEFAULT_UART_TX_PIN,
GPIO_FUNC_UART)) ;

The two pin numbers, and the function UART are stored, then decoded to their actual function names (UART1 TX etc) by
picotool. The bi_decl_if_func_used makes sure the binary information is only included if the containing function is called.

Equally, the video code contains a few lines like this:

bi_decl_if_func_used(bi_pin_mask_with_name(8x1f << (PICO_SCANVIDEO_COLOR_PIN_BASE +
PICO_SCANVIDEO_DPI_PIXEL_RSHIFT), "Red 0-4"));

B.4.4. Details

Things are designed to waste as little space as possible, but you can turn everything of with preprocessor var
PICO_NO_BINARY_INFO=1. Additionally any SDK code that inserts binary info cane be separately excluded by its own

preprocesor var.

You need,

#include "pico/binary_info.h"

There are a bunch of bi_ macros in the headers

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

bi_binary_end(end)

bi_program_name (name)
bi_program_description(description)
bi_program_version_string(version_string)
bi_program_build_date_string(date_string)
bi_program_url(url)

bi_program_feature(feature)
bi_program_build_attribute(attr)
bi_1pin_with_func(p8, func)

bi_2pins_with_func(p@, p1, func)
bi_3pins_with_func(p@, p1, p2, func)
bi_4pins_with_func(p@, p1, p2, p3, func)
bi_5pins_with_func(p@, p1, p2, p3, p4, func)
bi_pin_range_with_func(plo, phi, func)
bi_pin_mask_with_name(pmask, label)
bi_pin_mask_with_names(pmask, label)
bi_1pin_with_name(p@, name)

bi_2pins_with_names(p8, name@, p1, namel)
bi_3pins_with_names(p8, name@, p1, namel, p2, name2)
bi_4pins_with_names(p@, name@, p1, namel, p2, name2, p3, name3)

which make use of underlying macros, e.g.

#define bi_program_url(url) bi_string(BINARY_INFO_TAG_RASPBERRY_PI, BINARY_INFO_ID_RP_PROGRAM_URL,

url)

You then

either use bi_decl(bi_blah(:-)) for unconditional inclusion of

the binary info blah, or

B.4. Binary Information

66

Getting started with Raspberry Pi Pico

bi_decl_if_func_used(bi_blah(-+)) for binary information that may be stripped if the enclosing function is not included in

the binary by the linker (think --gc-sections).

For example,
1 #include <stdio.h>
2 #include "pico/stdlib.h”
3 #include "hardware/gpio.h"
4 #include "pico/binary_info.h"
5
6 const uint LED_PIN = 25;
7
8 int main() {
9
10 bi_decl(bi_program_description("This is a test binary."));
11 bi_decl(bi_1pin_with_name(LED_PIN, "On-board LED"));
12
13 setup_default_uart();
14 gpio_set_function(LED_PIN, GPIO_FUNC_PROC);
15 gpio_set_dir(LED_PIN, GPIO_OUT);
16 while (1) {
17 gpio_put(LED_PIN, ©);
18 sleep_ms(250) ;
19 gpio_put(LED_PIN, 1);
20 puts("Hello World\n");
21 sleep_ms(1000) ;
22 }
23 }

when queried with picotool,

$ sudo picotool info -a test.uf2
File test.uf2:

Program Information

name: test

description: This is a test binary.
features: stdout to UART

binary start: ©x10000000

binary end: 0x100031f8

Fixed Pin Information
0: UARTO TX

1: UART@ RX

25: On-board LED
Build Information

build date: Jan 4 2021

shows our information strings in the output.

B.4.5. Setting common fields from CMake

You can also set fields directly from your project's CMake file, e.g.,

B.4. Binary Information

67

Getting started with Raspberry Pi Pico
]

pico_set_program_name(foo "not foo") @
pico_set_program_description(foo "this is a foo")
pico_set_prorgam_version_string(foo "0.60001a")
pico_set_program_url(foo "www.plinth.com/foo")

1. The name "foo" would be the default.

O NoTE

All of these are passed as command line arguments to the compilation, so if you plan to use quotes, newlines etc you
may have better luck defining it using bi_dec1 in the code.

]
B.4. Binary Information 68

@ Raspberry Pi

Raspberry Piis a trademark of the Raspberry Pi Foundation

Raspbenry Pi Trading Ltd

	Getting started with Raspberry Pi Pico
	Colophon
	Legal Disclaimer Notice
	Table of Contents

	Chapter 1. Quick Pico Setup
	Chapter 2. The Pico SDK
	2.1. Get the Pico SDK and examples
	2.2. Install the Toolchain

	Chapter 3. Blinking an LED in C
	3.1. Building "Blink"
	3.2. Load and run "Blink"
	3.2.1. From the desktop
	3.2.2. Using the command line

	Chapter 4. Saying "Hello World" in C
	4.1. Serial input and output on Raspberry Pi Pico
	4.2. Build "Hello World"
	4.3. Flash and Run "Hello World"
	4.4. See "Hello World" USB output
	4.5. See "Hello World" UART output
	4.6. Powering the board

	Chapter 5. Debugging with SWD
	5.1. Build "Hello World" debug version
	5.2. Installing OpenOCD
	5.3. Installing GDB
	5.4. Use GDB and OpenOCD to debug Hello World

	Chapter 6. Using Visual Studio Code
	6.1. Installing Visual Studio Code
	6.2. Loading a Project
	6.3. Debugging a Project
	6.3.1. Running "Hello World" on the Raspberry Pi Pico

	Chapter 7. Creating your own Project
	7.1. Debugging your project
	7.2. Working in Visual Studio Code
	7.3. Automating project creation
	7.3.1. Project generation from the command line

	Chapter 8. Building on other platforms
	8.1. Building on Apple macOS
	8.1.1. Installing the Toolchain
	8.1.2. Using Visual Studio Code
	8.1.3. Building with CMake Tools
	8.1.4. Saying "Hello World"

	8.2. Building on MS Windows
	8.2.1. Installing the Toolchain
	8.2.2. Getting the Pico SDK and examples
	8.2.3. Building "Hello World" from the Command Line
	8.2.4. Building "Hello World" from Visual Studio Code
	8.2.5. Flashing and Running "Hello World"

	Chapter 9. Using other Integrated Development Environments
	9.1. Using Eclipse
	9.1.1. Setting up Eclipse for Pico on a Linux machine

	9.2. Using CLion
	9.2.1. Setting up CLion

	9.3. Other Environments
	9.3.1. Using openocd-svd

	Appendix A: Using Picoprobe
	A.1. Build OpenOCD
	A.1.1. Linux
	A.1.2. Windows
	A.1.3. Mac

	A.2. Build and flash picoprobe
	A.3. Picoprobe Wiring
	A.4. Install Picoprobe driver (only needed on Windows)
	A.5. Using Picoprobe’s UART
	A.5.1. Linux
	A.5.2. Windows
	A.5.3. Mac

	A.6. Using Picoprobe with OpenOCD

	Appendix B: Using Picotool
	B.1. Getting picotool
	B.2. Building picotool
	B.3. Using picotool
	B.3.1. Display information
	B.3.2. Save the program

	B.4. Binary Information
	B.4.1. Basic information
	B.4.2. Pins
	B.4.3. Including Binary information
	B.4.4. Details
	B.4.5. Setting common fields from CMake

