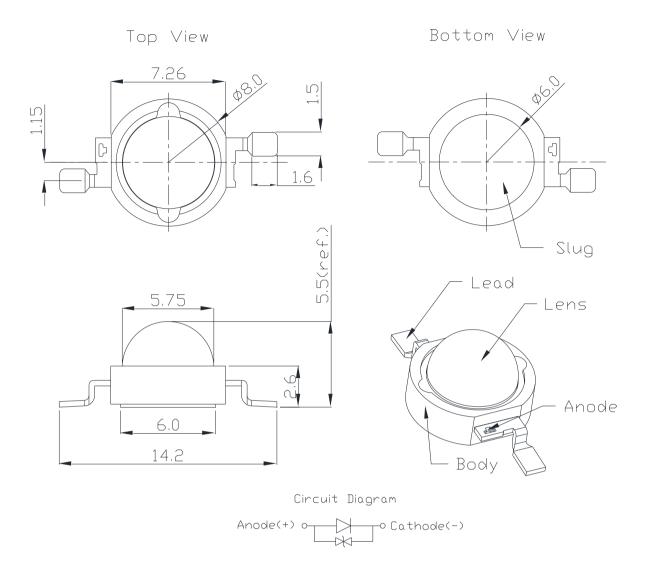


ProLight PM2E-3LxR-xx 3W High CRI Power LED Technical Datasheet Version: 1.1


Features

- Good color uniformity
- Industry best moisture sensitivity level JEDEC Level 4
- Lead free reflow soldering
- RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- Low Voltage DC operated
- Instant light (less than 100ns)
- No UV
- Superior ESD protection

Typical Applications

- Reading lights (car, bus, aircraft)
- Portable (flashlight, bicycle)
- Uplighters/Downlighters
- Decorative/Entertainment
- Bollards/Security/Garden
- Cove/Undershelf/Task
- Indoor/Outdoor Commercial and Residential Architectural
- Automotive Ext (Stop-Tail-Turn, CHMSL, Mirror Side Repeat)
- LCD backlights

Emitter Mechanical Dimensions

Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are $\pm\,0.20\mbox{mm}.$
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, T_J = 25°C

Luminous Flux Φ_V (Im)

Radiation	Color	Part Number	@700)mA	Refer @350mA	CRI
Pattern	Coloi	Emitter	Minimum	Typical	Typical	Typical
	White	PM2E-3LWR-SD	218.9	274	153	74
Lambertian	White	PM2E-3LWR-R8	192	244	136	84
	Warm White	PM2E-3LVR-R8	192	221	123	80

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

Forward Voltage V_F (V)

Color	Min.	@700mA Typ.	Max.	Refer @350mA Typ.	Thermal Resistance Junction to Slug (°C/W)
White	3.1	3.5	4.1	3.1	8
Warm White	3.1	3.5	4.1	3.1	8

[•] ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 700mA, T_J = 25°C

				Total included Angle	Viewing Angle
Color	Co Min.	Ior Temperature C Typ.	CCT Max.	(degrees) $\theta_{0.90V}$	(degrees) 2 θ _{1/2}
White Warm White	4100 K 2700 K	5500 K 3300 K	10000 K 4100 K	180 180	130 130

ullet ProLight maintains a tolerance of \pm 5% for CCT measurements.

Electro-Optical Characteristics, $T_J = 25$ °C

I _F (mA)	V _F (V)	Power (W)	PM2E-3LWR-SD Flux (lm)	PM2E-3LWR-R8 Flux (lm)	PM2E-3LVR-R8 Flux (lm)
250	3.02	0.76	112.6	100.2	90.8
300	3.08	0.92	133.2	118.6	107.4
350	3.14	1.10	152.8	136.1	123.2
400	3.19	1.28	171.8	153.0	138.6
500	3.30	1.65	208.2	185.4	167.9
600	3.40	2.04	242.1	215.6	195.3
700	3.50	2.45	274.0	244.0	221.0
800	3.60	2.88	304.2	270.9	245.3

[•] All values are reference only.

Absolute Maximum Ratings

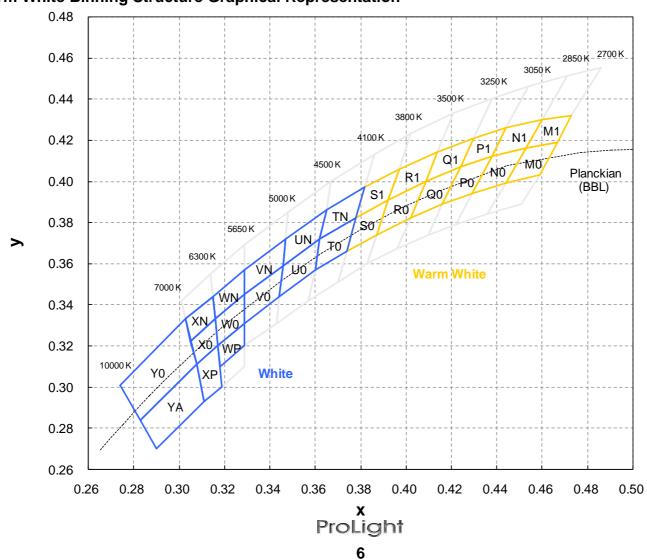
Parameter	White/Warm White	
DC Forward Current (mA)	700	
Peak Pulsed Forward Current (mA)	1000 (less than 1/10 duty cycle@1KHz)	
ESD Sensitivity	14000\/ (Class III)	
(HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)	
LED Junction Temperature	120°C	
Operating Board Temperature	-40°C - 90°C	
at Maximum DC Forward Current		
Storage Temperature	-40°C - 120°C	
Soldering Temperature	JEDEC 020c 260°C	
Allowable Reflow Cycles	3	
Reverse Voltage	Not designed to be driven in reverse bias	

Photometric Luminous Flux Bin Structure at 700mA

Part Number	Bin Code	Minimum Photometric Flux (Im)	Maximum Photometric Flux (Im)	Available Color Bins
	X2	218.9	249.6	All
PM2E-3LWR-SD	Y1	249.6	284.5	All
	Y2	284.5	324.5	[1]
	X1	192	218.9	All
PM2E-3LWR-R8	X2	218.9	249.6	All
	Y1	249.6	284.5	[1]
	X1	192	218.9	All
PM2E-3LVR-R8	X2	218.9	249.6	All
	Y1	249.6	284.5	[1]

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- The flux bin of the product may be modified for improvement without notice.
- ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Forward Voltage Bin Structure at 700mA


Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	В	3.10	3.35
White	D	3.35	3.60
VVIIIC	Е	3.60	3.85
	F	3.85	4.10
	В	3.10	3.35
Warm White	D	3.35	3.60
vvaiiii vviiito	E	3.60	3.85
	F	3.85	4.10

[•] ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bin

White and Warm White Binning Structure Graphical Representation

Color Bins

White Bin Structure

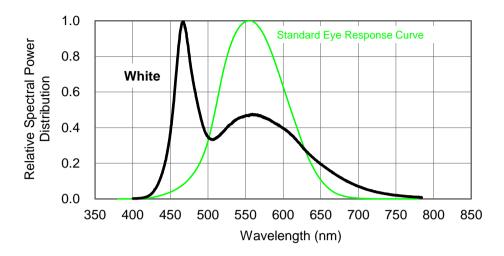
Bin Code	X	у	Typ. CCT (K)	Bin Code	X	у	Typ. CCT (K)
	0.378	0.382			0.329	0.345	
TO	0.374	0.366	4300	WN	0.316	0.333	5970
10	0.360	0.357	4300	VVIN	0.315	0.344	3970
	0.362	0.372			0.329	0.357	
	0.382	0.397			0.329	0.331	
TN	0.378	0.382	4300	WP	0.329	0.320	5970
111	0.362	0.372	4300	V V I	0.318	0.310	3970
	0.365	0.386			0.317	0.320	
	0.362	0.372			0.308	0.311	
U0	0.360	0.357	4750	X0	0.305	0.322	6650
00	0.344	0.344	4730	χυ	0.316	0.333	0000
	0.346	0.359			0.317	0.320	
	0.365	0.386	4750		0.305	0.322	
UN	0.362	0.372		XN	0.303	0.333	6650
OIV	0.346	0.359	4730	XI V	0.315	0.344	0000
	0.347	0.372			0.316	0.333	
	0.329	0.331			0.308	0.311	
V0	0.329	0.345	5320	XP	0.317	0.320	6650
VO	0.346	0.359	3320	AΓ	0.319	0.300	0030
	0.344	0.344			0.311	0.293	
	0.329	0.345			0.308	0.311	
VN	0.329	0.357	5320	Y0	0.283	0.284	8000
VIN	0.347	0.372	3320	10	0.274	0.301	8000
	0.346	0.359			0.303	0.333	
	0.329	0.345			0.308	0.311	
W0	0.329	0.331	5970	YA	0.311	0.293	8000
VVO	0.317	0.320	3910	IA	0.290	0.270	0000
	0.316	0.333			0.283	0.284	

[•] Tolerance on each color bin (x, y) is ± 0.005

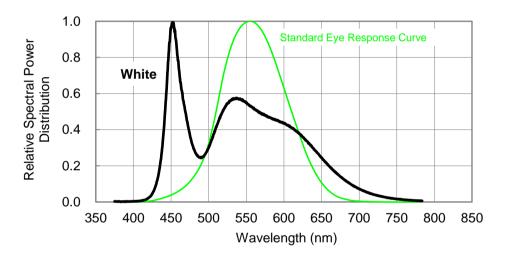
Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bins

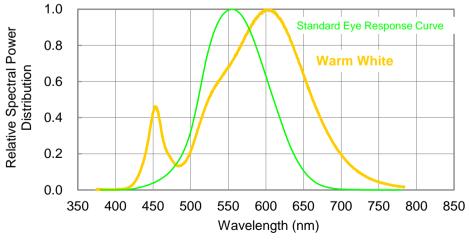
Warm White Bin Structure


Bin Code	х	у	Typ. CCT (K)	Bin Code	х	у	Typ. CCT (K)
	0.453	0.416			0.409	0.400	
MO	0.444	0.399	2770	Q0	0.402	0.382	3370
IVIO	0.459	0.403	2110	QU	0.416	0.389	3370
	0.467	0.419			0.424	0.407	
	0.460	0.430			0.414	0.414	
M1	0.453	0.416	2770	Q1	0.409	0.400	3370
IVI I	0.467	0.419	2110	Qı	0.424	0.407	3370
	0.473	0.432			0.430	0.421	
	0.438	0.412			0.392	0.391	
N0	0.429	0.394	2950	R0	0.387	0.374	3650
140	0.444	0.399	2930		0.402	0.382	3030
	0.453	0.416			0.409	0.400	
	0.444	0.426			0.414	0.414	3650
N1	0.438	0.412	2950	R1	0.409	0.400	
INI	0.453	0.416	2930	IXI	0.392	0.391	3030
	0.460	0.430			0.397	0.406	
	0.424	0.407			0.392	0.391	
P0	0.416	0.389	3150	S0	0.387	0.374	3950
10	0.429	0.394	3130	30	0.374	0.366	3930
	0.438	0.412			0.378	0.382	
	0.430	0.421			0.397	0.406	
P1	0.424	0.407	3150	S1	0.392	0.391	3950
1 1	0.438	0.412	3130	01	0.378	0.382	3330
	0.444	0.426			0.382	0.397	

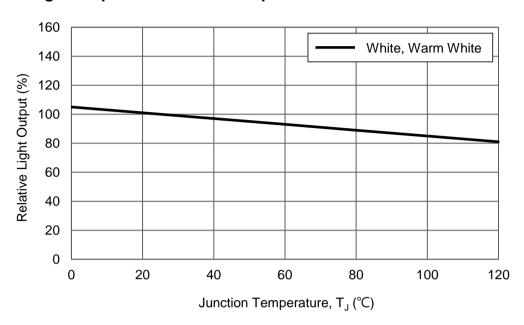
ullet Tolerance on each color bin (x , y) is ± 0.005


Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Spectrum, $T_J = 25^{\circ}C$


1. PM2E-3LWR-SD

2. PM2E-3LWR-R8


3. PM2E-3LVR-R8

ProLight

Light Output Characteristics

Relative Light Output vs. Junction Temperature at 700mA

Forward Current Characteristics, T_J = 25°C

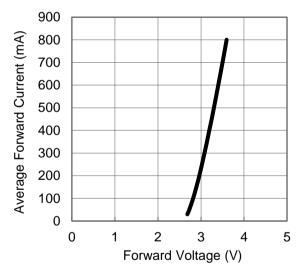


Fig 1. Forward Current vs. Forward Voltage for White, Warm White.

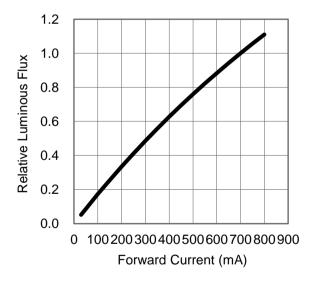
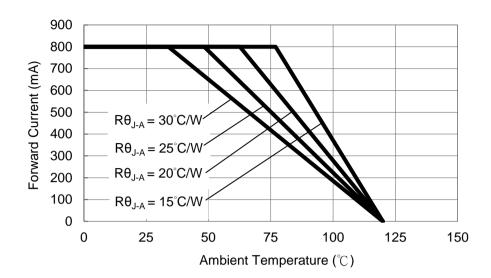
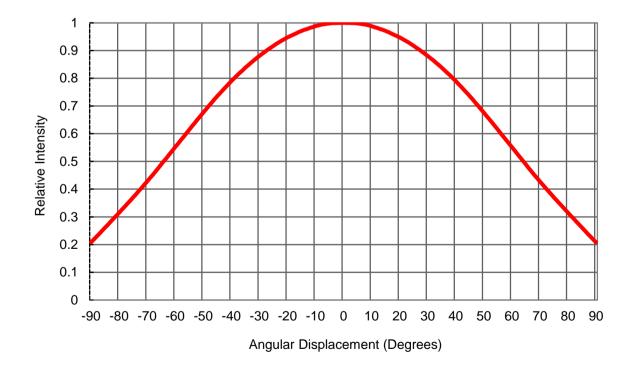



Fig 2. Relative Luminous Flux vs. Forward Current for White, Warm White at $T_J=25^{\circ}\mathbb{C}$ maintained.


Ambient Temperature vs. Maximum Forward Current

1. White, Warm White (T_{JMAX} = 120°C)

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 4

			Soak Requirements				
Level	Floor Life		Standard		Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
4	72 hours	≤30°C /	96 +2/-0	30°C /	20 +0.5/-0	60°C /	
4 72 hours	60% RH	30 +2/-0	60% RH	20 +0.5/-0	60% RH		

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

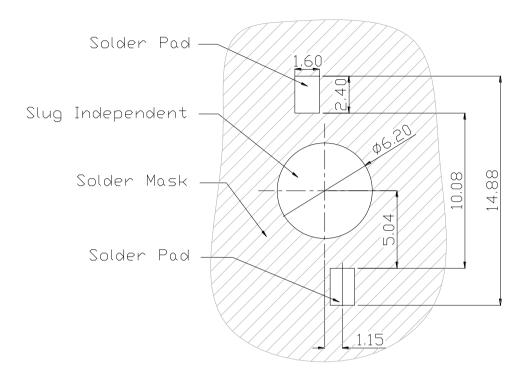
			Soak Requirements				
Level	Floor Life		Stan	dard	Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C /	168 +5/-0	85°C /	NA	NA	
	Offillitilled	85% RH	100 +5/-0	85% RH	INA	INA	
2	1 year	≤30°C /	168 +5/-0	85°C /	NA	NA	
	i yeai	60% RH	100 +5/-0	60% RH	INA	INA	
2a	4 weeks	≤30°C /	696 +5/-0	30°C /	120 +1/-0	60°C /	
Za	4 weeks	60% RH	090 +5/-0	60% RH	120 +1/-0	60% RH	
3	168 hours	≤30°C /	192 +5/-0	30°C /	40 +1/-0	60°C /	
3	100 110015	60% RH	192 +5/-0	60% RH	40 +1/-0	60% RH	
4	72 hours	≤30°C /	96 +2/-0	30°C /	20 +0.5/-0	60°C /	
	72 110013	60% RH	90 +2/-0	60% RH	20 +0.3/-0	60% RH	
5	48 hours	≤30°C /	72 +2/-0	30°C /	15 +0.5/-0	60°C /	
3	46 110015	60% RH	7 Z +2/-0	60% RH	15 +0.5/-0	60% RH	
5a	24 hours	≤30°C /	48 +2/-0	30°C /	10 +0.5/-0	60°C /	
Ja	24 110015	60% RH	40 +2/-0	60% RH	10 +0.5/-0	60% RH	
6	Time on Label	≤30°C /	Time on Label	30°C /	NA	NA	
0	(TOL)	60% RH	(TOL)	60% RH	INA	INA	

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria	
Room Temperature	25°C, I _F = max DC (Note 1)	1000 hours	Note 2	
Operating Life (RTOL)				
Wet High Temperature	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2	
Operating Life (WHTOL)	00 0/00/01til, if = max 20 (1toto 1)	1000 Hodis	14010 2	
Wet High Temperature	95°C/950/ DU non energting	1000 hours	Note 2	
Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 flours	Note 2	
High Temperature	110°C, non-operating	1000 hours	Note 2	
Storage Life (HTSL)	110 C, Hon-operating	1000 110015	Note 2	
Low Temperature	-40°C, non-operating	1000 hours	Note 2	
Storage Life (LTSL)	-40 C, non-operating	1000 110015	14010 2	
Non-operating	-40°C to 120°C, 30 min. dwell,	200 cycles	Note 2	
Temperature Cycle (TMCL)	<5 min. transfer	200 Cycles	Note 2	
Mechanical Shock	1500 G, 0.5 msec. pulse,		Note 3	
Wechanical Shock	5 shocks each 6 axis		Note 5	
Natural Drop	On concrete from 1.2 m, 3X		Note 3	
Variable Vibration	10-2000-10 Hz, log or linear sweep rate,			
Frequency	20 G about 1 min., 1.5 mm, 3X/axis		Note 3	
	Steam age for 16 hrs., then solder dip		Solder coverage	
Solderability	at 260°C for 5 sec.		on lead	

Notes:

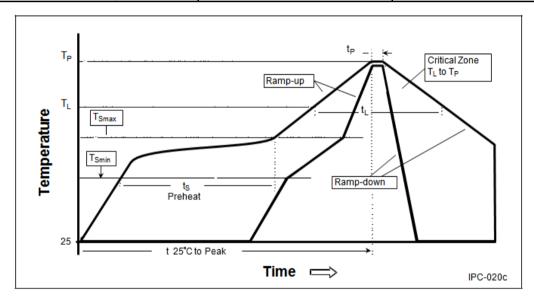
1. Depending on the maximum derating curve.


2. Criteria for judging failure

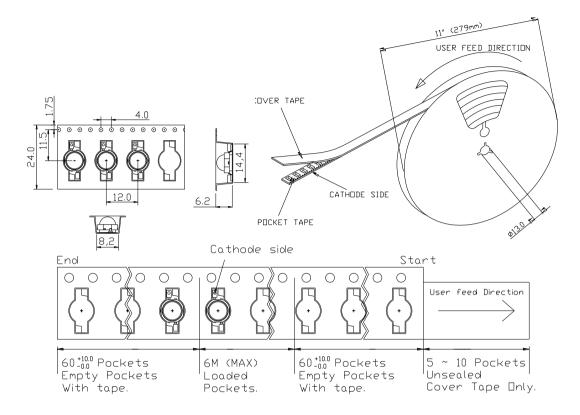
Item	Test Condition	Criteria for Judgement	
		Min.	Max.
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	
Reverse Current (I _R)	$V_R = 5V$		50 μA

^{*} The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate $(T_{Smax}$ to $T_P)$	3°C / second max.	3°C / second max.
Preheat		
– Temperature Min (T_{Smin})	100°C	150°C
– Temperature Max (T_{Smax})	150°C	200°C
- Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T_L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging

Notes:

- 1. The emitters should be picked up by the body (not the lens) during placement. The inner diameter of the pick-up collet should be greater than or equal to 6.5 mm.
- 2. 250 or 500 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. All dimendions without tolerances are for reference only.
- **Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

- Storage
 - Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.
- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/