MOSFET – Power, Single N-Channel, Logic Level, SOT-23 60 V, 155 mΩ

NVR5198NL

Features

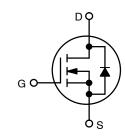
- Small Footprint Industry Standard Surface Mount SOT-23 Package
- Low R_{DS(on)} for Low Conduction Losses and Improved Efficiency
- NVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

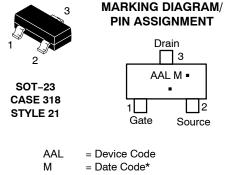
Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	60	V	
Gate-to-Source Voltag	je		V _{GS}	±20	V	
Continuous Drain	Steady State	$T_{mb} = 25^{\circ}C$	۱ _D	2.2	А	
Current R _{ΨJmb} (Notes 1, 2, 3, and 4)	Sidle	$T_{mb} = 100^{\circ}C$		1.6		
Power Dissipation		$T_{mb} = 25^{\circ}C$	PD	1.5	W	
R _{ΨJmb} (Notes 1 and 3)		$T_{mb} = 100^{\circ}C$		0.6		
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	I _D	1.7	А	
Current $R_{\theta JA}$ (Note 1, 2, 3, and 4)	Siale	T _A = 100°C		1.2		
Power Dissipation		$T_A = 25^{\circ}C$	PD	0.9	W	
$R_{\theta JA}$ (Notes 1 and 3)		T _A = 100°C		0.4		
Pulsed Drain Current	$\begin{array}{l} T_{A}=25^{\circ}C,\\ t_{p}=10\ \mu s \end{array}$		I _{DM}	27	A	
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	°C	
Source Current (Body	Source Current (Body Diode) I _S			1.9	А	
Lead Temperature for S (1/8" from case for 10 s		Purposes	ΤL	260	°C	

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51–12 for packages in which substantially less than 100% of the heat flows to single case surface.
- 3. Surface-mounted on FR4 board using a 650 mm2, 2 oz. Cu pad.
- 4. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
60 V	155 m Ω @ 10 V	2.2 A
	205 mΩ @ 4.5 V	/

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

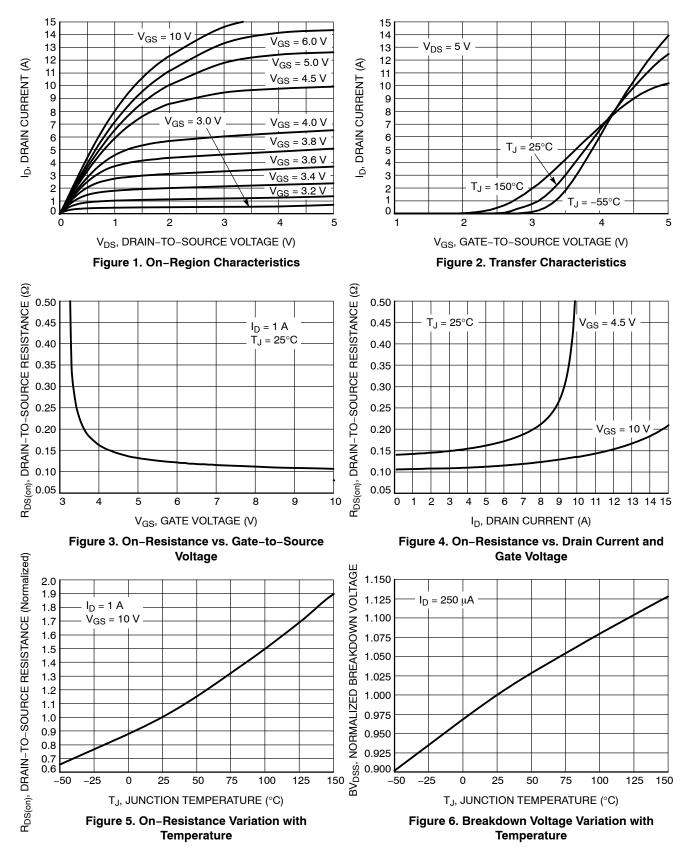
ORDERING INFORMATION

	Device	Package	Shipping [†]
NV	/R5198NLT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NV	/R5198NLT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel

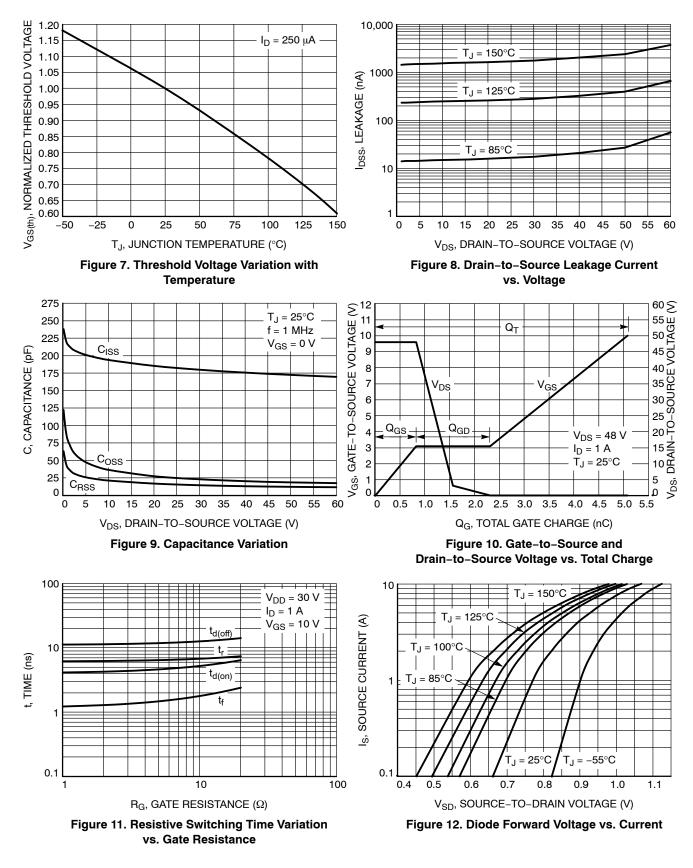
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

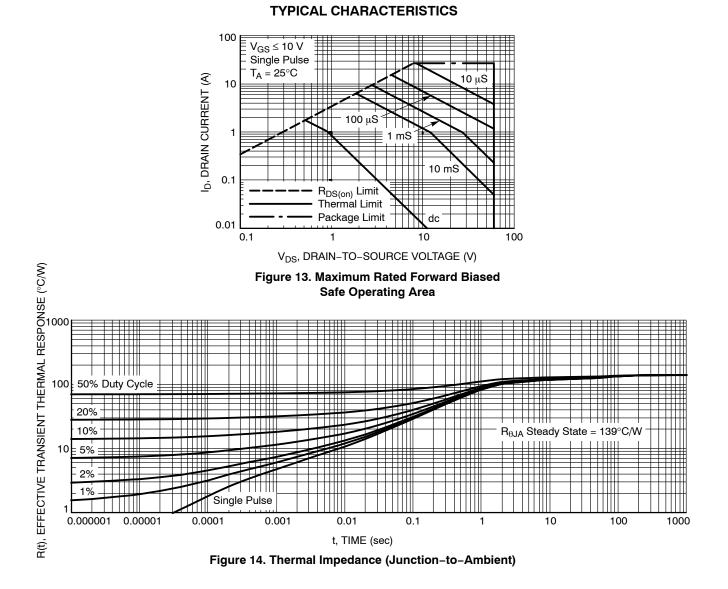
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Lead #3 - Drain (Notes 2 and 3)	$R_{\Psi Jmb}$	86	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	139	°C/W


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Co	nditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	-			-	-	-	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V,	I _D = 250 μA	60			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25	5°C, I _D = 250 μA		70		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	$T_J = 25^{\circ}C$			1.0	μA	
		$V_{DS} = 60 V$	T _J = 125°C			10		
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±20 V			±100	nA	
ON CHARACTERISTICS (Note 5)								
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} ,	I _D = 250 μA	1.5		2.5	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 25	5°C, I _D = 250 μA		-6.5		mV/°C	
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10	V, I _D = 1 A		107	155	mΩ	
		V _{GS} = 4.5	V, I _D = 1 A		142	205		
Forward Transconductance	9 FS	V _{DS} = 5.0	V, I _D = 1 A		3		S	
CHARGES, CAPACITANCES & GAT	E RESISTANCE	I		•	-			
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			182		pF	
Output Capacitance	C _{oss}				25			
Reverse Transfer Capacitance	C _{rss}				16			
Total Gate Charge	Q _{G(TOT)}	V _{DS} = 48 V,	V _{GS} = 4.5 V		2.8		nC	
		$I_D = 1 A$	V _{GS} = 10 V		5.1			
Threshold Gate Charge	Q _{G(TH)}	V _{DS} = 48 V, I _D = 1 A			0.3			
Gate-to-Source Charge	Q _{GS}				0.8			
Gate-to-Drain Charge	Q _{GD}	V _{GS} =			1.5		1	
Plateau Voltage	V _{GP}				3.1		V	
Gate Resistance	R _G				8		Ω	
SWITCHING CHARACTERISTICS (N	lote 6)			-	-	-	-	
Turn-On Delay Time	t _{d(on)}				5		ns	
Rise Time	t _r	V _{DS} = 30 V,	V _{GS} = 10 V,		7		7	
Turn-Off Delay Time	t _{d(off)}	I _D = 1 A, I	$R_{G} = 10 \Omega$		13			
Fall Time	t _f				2			
DRAIN-SOURCE DIODE CHARACT	ERISTICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.8	1.2	V	
		I _S = 1 A	T _J = 125°C		0.6		1	
Reverse Recovery Time	t _{rr}		•		12		ns	
Charge Time	ta	Is = 1 Ado. \	∕ _{GS} = 0 V _{dc} ,		9		1	
Discharge Time	t _b		100 A/μs		3		1	
Reverse Recovery Stored Charge	Q _{RR}				6		nC	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.


6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

www.onsemi.com 5

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

D

3

TOP VIEW

SIDE VIEW

Нe

DETAIL A

-3X b

DUSem

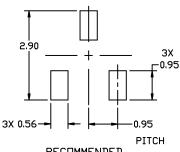
SCALE 4:1

Α A1SOT-23 (TO-236) **CASE 318 ISSUE AT**

0.25

-L1

DETAIL A


END VIEW

DATE 01 MAR 2023

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- CONTROLLING DIMENSION: MILLIMETERS 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS DF THE BASE MATERIAL. З.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 4.

	MILLIM	IETERS			INCHES	
DIM	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
с	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
Η _E	2.10	2.40	2.64	0.083	0.094	0.104
Т	0*		10*	0*		10*

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. *

GENERIC **MARKING DIAGRAM***

XXX = Specific Device Code

М = Date Code

= Pb-Free Package .

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 2		
the right to make changes without furth purpose, nor does onsemi assume ar	onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.				

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

onsemi

SOT-23 (TO-236) CASE 318 ISSUE AT

DATE 01 MAR 2023

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 2 OF 2	

onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative