onsemi

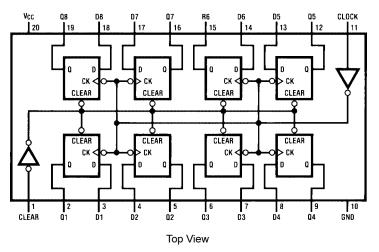
Octal D-Type Flip-Flop with Clear

MM74HCT273

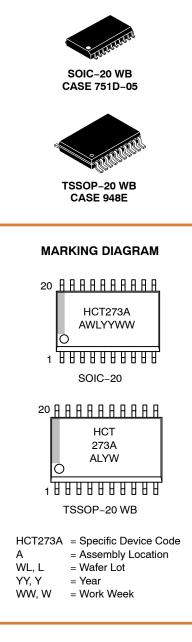
General Description

The MM74HCT273 utilizes advanced silicon-gate CMOS technology. It has an input threshold and output drive similar to LS-TTL with the low standby power of CMOS.

These positive edge-triggered flip-flops have a common clock and clear-independent Q outputs. Data on a D input, having the specified set-up and hold time, is transferred to the corresponding Q output on the positive-going transition of the clock pulse. The asynchronous clear forces all outputs LOW when it is LOW.


All inputs to this device are protected from damage due to electrostatic discharge by diodes to V_{CC} and ground.

MM74HCT devices are intended to interface TTL and NMOS components to CMOS components. These parts can be used as plug-in replacements to reduce system power consumption in existing designs.


Features

- Typical Propagation Delay: 18 ns
- Low Quiescent Current: 160 µA Maximum (74HCT Series)
- Fanout of 10 LS-TTL Loads
- This is a Pb–Free Device

Connection Diagram

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

TRUTH TABLE (Each Flip-Flop)

	Outputs		
Clear	Clock	D	Q
L	Х	Х	L
Н	\uparrow	Н	Н
Н	\uparrow	L	L
Н	L	Х	Q0

NOTE: H = HIGH Level (steady-state) L = LOW Level (steady-state)

X = Don't Care

↑ = Transition from LOW-to-HIGH level

Q0 = The level of Q before the indicated steady-state input conditions were established.

Logic Diagram

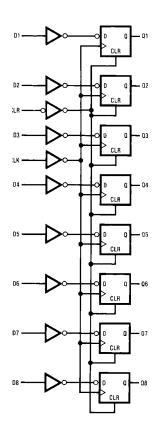


Figure 2. Logic Diagram

ABSOLUTE MAXIMUM RATINGS (Note 1)

Symbol	Parameter		Rating
V _{CC}	Supply Voltage		–0.5 to +7.0 V
V _{IN}	DC Input Voltage		–0.5 to V _{CC} + 0.5 V
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} + 0.5 V
I _{IK} , I _{OK}	Clamp Diode Current	±20 mA	
I _{OUT}	DC Output Current, per Pin	±25 mA	
I _{CC}	DC V _{CC} or GND Current, per Pin		±50 mA
T _{STG}	Storage Temperature Range		–65°C to +150°C
PD	Power Dissipation S.O. Package only		500 mW
TL	Lead Temperature (Soldering 10 Seconds)		260°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Unless otherwise specified all voltages are referenced to ground.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply Voltage	4.5	5.5	V
V _{IN} , V _{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-55	+125	°C
t _r , t _f	Input Rise or Fall Times		500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MM74HCT273

	Parameter		Тд	, = 25°C	T _A = −40°C to 85°C	T _A = −55°C to 125°C	
Symbol		Conditions	Тур G		uaranteed Limits		Unit
VIH	Minimum HIGH Level Input Voltage		-	2.0	2.0	2.0	V
V _{IL}	Maximum LOW Level Input Voltage		-	0.8	0.8	0.8	V
V _{OH}	Minimum HIGH Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} – 0.1	V _{CC} – 0.1	V _{CC} – 0.1	V
		$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OUT} = 4.0 \text{ mA}, \ V_{CC} = 4.5 \text{ V} \end{array}$	4.2	3.98	3.84	3.7	V
		$\label{eq:VIN} \begin{split} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ I_{OUT} &= 4.8 \text{ mA}, V_{CC} = 5.5 \text{ V} \end{split}$	5.2	4.98	4.84	4.7	V
V _{OL}	Minimum LOW Level Voltage	V _{IN} = V _{IH} or V _{IL} I _{OUT} = 20 μA	0	0.1	0.1	0.1	V
			0.2	0.26	0.33	0.4	V
			0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}	-	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0 \ \mu A$	-	8	80	160	μA
		V _{IN} = 2.4 V or 0.5 V (Note 2)	-	0.6	0.8	0.9	mA

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 5 V \pm 10%, unless otherwise specified)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Measured per pin, all other inputs held at V_{CC} or GND.

MM74HCT273

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Unit
f _{MAX}	Maximum Operating Frequency		68	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clock to Q		18	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clear to Q		21	30	ns
t _{REM}	Minimum Removal Time, Clear to Clock		-1	5	ns
t _S	Minimum Set–Up Time D to Clock		6	20	ns
t _H	Minimum Hold Time Clock to D		-3	5	ns
tw	Minimum Pulse Width Clock or Clear		10	16	ns

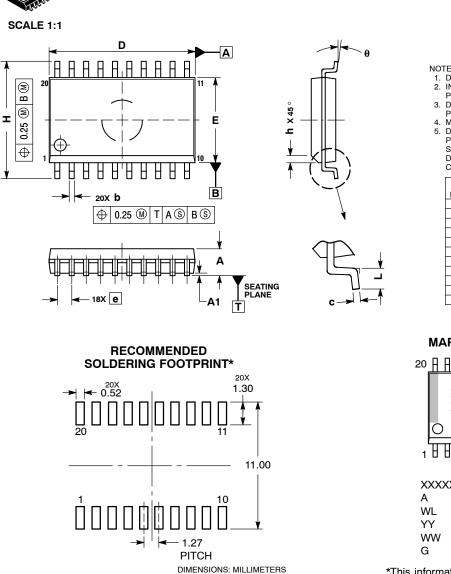
AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5 V, T_A = 25°C, C_L = 15 pF, t_r = t_f = 6 ns)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V \pm 10%, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified))

			T _A =	25°C	T _A = −40°C to 85°C	T _A = −55°C to 125°C	
Symbol	Parameter	Conditions	Тур		Guaranteed L	imits.	Unit
f _{MAX}	Maximum Operating Frequency		68	27	21	18	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clock to Q		22	37	46	56	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Clear to Q		25	35	44	52	ns
t _{REM}	Minimum Removal Time Clear to Clock		-1	5	6	7	ns
t _S	Minimum Set–Up Time D to Clock		6	20	25	30	ns
t _H	Minimum Hold Time Clock to D		-3	5	5	5	ns
tw	Minimum Pulse Width Clock or Clear		10	16	25	30	ns
t _r , t _f	Maximum Input Rise and Fall Time, Clock		-	500	500	500	ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		11	15	19	22	ns
C _{PD}	Power Dissipation Capacitance (Note 3)	(Per Flip–Flop)	50	-	-	-	pF
CIN	Maximum Input Capacitance		6	10	10	10	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product


performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}^2 f + I_{CC}$.

MM74HCT273

ORDERING INFORMATION

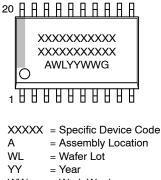
Part Number	Package	Shipping [†]
MM74HCT273WM	SOIC-20 WB, Case 751D-05	38 Units / Tube
MM74HCT273WMX	(Pb-Free and Halide-Free)	1000 Units / Tape & Reel
MM74HCT273MTC	TSSOP-20 WB, Case 948E	75 Units / Tube
MM74HCT273MTCX	(Pb-Free)	2500 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DATE 22 APR 2015

DUSEM

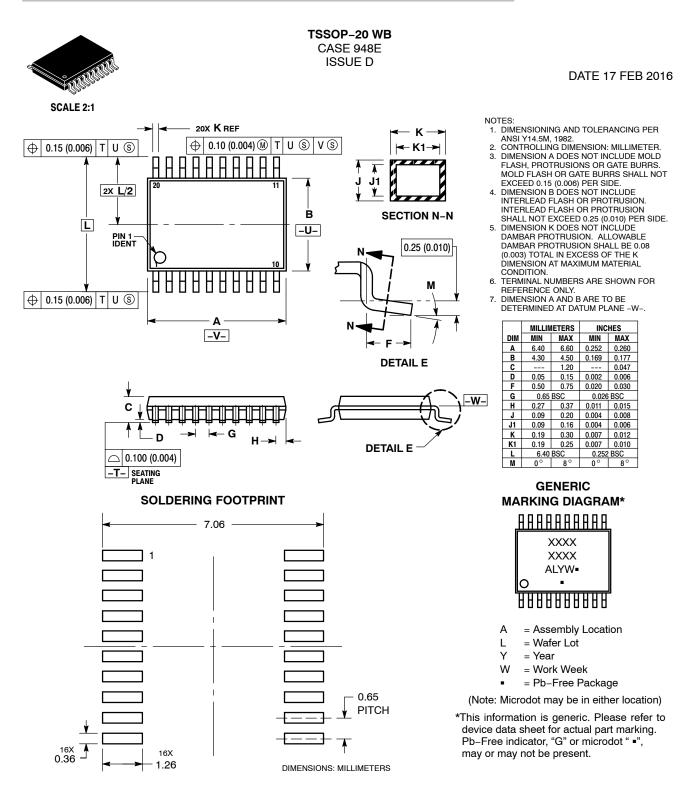

NOTES:

SOIC-20 WB CASE 751D-05 ISSUE H

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
b	0.35	0.49		
C	0.23	0.32		
D	12.65	12.95		
Е	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

GENERIC **MARKING DIAGRAM***



= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1		
the right to make changes without furth purpose, nor does onsemi assume a	er notice to any products herein. onsemi making ny liability arising out of the application or use	, LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular		

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-20 WB	PAGE 1 OF				

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative