

General Description

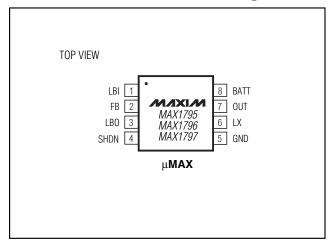
The MAX1795/MAX1796/MAX1797 are high efficiency step-up DC-DC converters intended for small portable hand-held devices. These devices feature Maxim's True-Shutdown™ circuitry, which fully disconnects the output from the input in shutdown, improves efficiency, and eliminates costly external components. All three devices also feature Maxim's proprietary LX-damping circuitry for reduced EMI in noise-sensitive applications. For additional in-system flexibility, a battery monitoring comparator (LBI/LBO) remains active even when the DC-DC converter is in shutdown.

The input voltage range is +0.7V to VOLIT, where VOLIT can be set from +2V to +5.5V. Startup is guaranteed from +0.85V. The MAX1795/MAX1796/MAX1797 have a preset, pin-selectable 5V or 3.3V output. The output can also be adjusted to other voltages, using two external resistors. The three devices differ only in their current limits, allowing optimization of external components for different loads: The MAX1795, MAX1796, and MAX1797 have current limits of 0.25A, 0.5A, and 1A, respectively. All devices are packaged in a compact 8pin µMAX package that is only 1.09mm tall and half the size of an 8-pin SO.

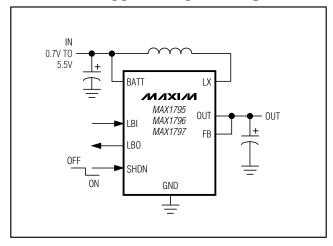
Applications

Portable Digital Audio Players PDAs/Palmtops Wireless Handsets Portable Terminals

Features


- ♦ >95% Efficiency
- ♦ True-Shutdown Circuitry **Output Disconnects from Input in Shutdown** No External Schottky Diode Needed
- ♦ 25µA Quiescent Supply Current
- **♦ Low-Noise Antiringing Feature**
- ♦ LBI/LBO Comparator Enabled in Shutdown
- ♦ 2µA Shutdown Current
- ♦ 8-Pin µMAX Package

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MAX1795EUA	-40°C to +85°C	8 μMAX
MAX1796EUA	-40°C to +85°C	8 μMAX
MAX1797EUA	-40°C to +85°C	8 μMAX

True-Shutdown is a trademark of Maxim Integrated Products.

Pin Configuration

Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

OUT, LX, SHDN, LBI, LBO, BATT to GND0.3V to +6V FB0.3V to (V _{OUT} + 0.3V) I _{LX} , I _{OUT} ±1.5A Output Short-Circuit Duration5s	Operating Temperature Range40°C to +85°C Junction Temperature+150°C Storage Temperature Range65°C to +150°C Lead Temperature (soldering, 10s)+300°C
	Lead Temperature (soldering, 10s)+300°C
Continuous Power Dissipation	
8-Pin uMAX (derate 4 1mW/°C above +70°C) 330mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{BATT} = +2V, OUT = FB (V_{OUT} = +3.3V), SHDN = LBI = GND, $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
Minimum Input Voltage		After startup			0.7		V
Operating Voltage	V _{BATT}	(Note 1)		1.0		5.5	V
Startup Voltage		$T_A = +25^{\circ}C, R_L = 3k!$	Ω		0.85	1.0	V
Startup Voltage Tempco					-2.2		mV/°C
Output Voltage	Vout	FB = OUT		3.17	3.3	3.43	_
Output voltage		FB = GND		4.80	5.0	5.20	V
Adjustable Output Voltage Range				2.0		5.5	V
		BATT = +2V,	MAX1795	100	180		
		FB = OUT	MAX1796	200	300		
Stoody State Output Current	lour	$(V_{OUT} = +3.3V)$	MAX1797	400	550		mA
Steady-State Output Current	lout	BATT = +2V, FB = GND (V _{OUT} = +5.0V)	MAX1795	50	120		MA
			MAX1796	100	200		
			MAX1797	250	370		
Feedback Set-Point Voltage (Adjustable Mode)	V _{FB}	$V_{OUT} = +2V \text{ to } +5.5V$		1.20	1.24	1.28	V
Feedback Input Current	I _{FB}	V _{FB} = +1.24V			4	100	nA
Internal NFET, PFET On-	Descent	$V_{OUT} = +3.3V,$	NFET		0.17	0.3	Ω
Resistance	R _{DS(ON)}	$I_{LX} = 100mA$	PFET		0.27	0.45	52
LV Controls Commontal insit (NICET		MAX1795		0.2	0.25	0.35	
LX Switch Current Limit (NFET only)	I _{LIM}	MAX1796		0.4	0.5	0.625	А
O'ny)		MAX1797		0.8	1.0	1.25	
LX Leakage Current	ILEAK	$V_{LX} = 0$ and +5.5V, $V_{OUT} = +5.5V$			0.2		μΑ
Synchronous Rectifier Turn-Off Current Limit					25		mA
Damping Switch On-Resistance	RDAMP			100	200	400	Ω
Operating Current into OUT (Note 2)		V _{FB} = +1.4V			25	45	μА

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{BATT} = +2V, OUT = FB (V_{OUT} = +3.3V), SHDN = LBI = GND, T_A = 0^{\circ}C to +85^{\circ}C, unless otherwise noted. Typical values are <math>T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Operating Current into BATT		$V_{FB} = +1.4V, V_{LBI} = +1V$		2	4	μΑ
Shutdown Current into BATT		SHDN = BATT, V _{LBI} = +1V		2	4	μΑ
LX Switch MaxImum On-Time	ton	V _{FB} = +1V, if current limit not reached	3	4	5	μS
LX Switch Minimum Off-Time	toff	V _{FB} = +1V	0.8	1	1.2	μS
LBI Threshold Voltage Falling	V _{LBI}	$V_{BATT} = +2V$	0.8	0.85	0.90	V
LBI Threshold Voltage Falling	V LBI	V _{BATT} = LBI	0.875	0.925	0.975	V
LBI Hysteresis				25		mV
LBI Input Current	I _{LBI}	$V_{LBI} = +0.8V$		9	100	nA
L DO L com Outrout Vielbours		$V_{BATT} = V_{LBI} = +0.975V$, sinking 20μA (50 Ω typ)			0.1	
LBO Low Output Voltage		$V_{BATT} = V_{LBI} = +1.1V$, sinking 100μA (25Ω typ)			0.1	V
LBO Off-Leakage Current		$V_{LBO} = +5.5V$		1	100	nA
SHDN Input Voltage	V _{IL}				0.2 X V _{BATT}	V
Toli Iliput voltage	V _{IH}		0.8 × V _{BATT}			V
Shutdown Input Current		V _{SHDN} = 0 and +5.5V			100	nA

ELECTRICAL CHARACTERISTICS

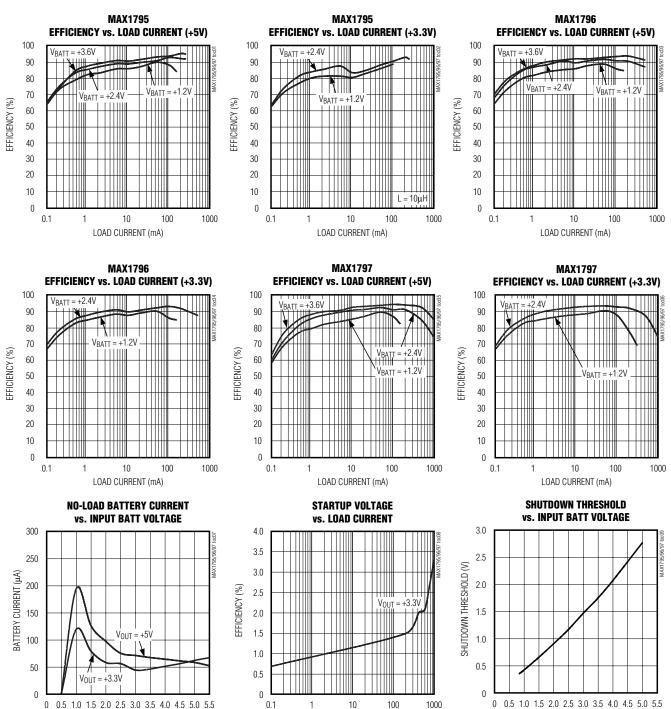
(V_{BATT} = +2V, OUT = FB (V_{OUT} = +3.3V), SHDN = LBI = GND, **T_A = -40°C to +85°C**, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
Operating Voltage	V _{BATT}	Note 1		1.0	5.5	V
Output Voltage	Vout	FB = OUT		3.13	3.47	V
Output voltage	VOU1	FB = GND		4.75	5.25	V
Adjustable Output Voltage Range				2.0	5.5	V
	lout	FB = OUT (V _{OUT} = +3.3V)	MAX1795	100		mA
			MAX1796	200		
Steady-State Output Current			MAX1797	400		
(Note 1)		FB = GND (V _{OUT} = +5.0V)	MAX1795	60		
			MAX1796	125		
		(*00) = +3.0*)	MAX1797	250		
Feedback Set-Point Voltage (Adjustable Mode)	V _{FB}	V _{OUT} = +2V to +5.5V		1.19	1.29	٧
Feedback Input Current	I _{FB}	V _{FB} = +1.25V			100	nA

ELECTRICAL CHARACTERISTICS (continued)

(VBATT = +2V, OUT = FB (VOUT = +3.3V), SHDN = LBI = GND, TA = -40°C to +85°C, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
Internal NFET, PFET On-	Proyoni	$V_{OUT} = +3.3V,$	NFET		0.3	Ω
Resistance	R _{DS(ON)}	$I_{LX} = 100mA$	PFET		0.45	52
LV Conitate Command Lineit (NEET	ILIM	MAX1795		0.19	0.37	
LX Switch Current Limit (NFET only)		MAX1796	MAX1796		0.7	Α
Olly)		MAX1797		0.8	1.32	
LX Leakage Current	ILEAK	$V_{LX} = 0$ and $+5.5V$, V_{C}	OUT = +5.5V			μΑ
Damping Switch On-Resistance	RDAMP			100	400	Ω
Operating Current into OUT (Note 2)		$V_{FB} = +1.4V$			45	μΑ
Operating Current into BATT		$V_{FB} = +1.4V, V_{LBI} = +$	1V		4	μΑ
Shutdown Current into BATT		SHDN = BATT, V _{LBI} =	SHDN = BATT, V _{LBI} = +1V		4	μΑ
LX Switch Maximum On-Time	ton	V _{FB} = +1V, if current li	mit not reached	2.75	5.25	μS
LX Switch Minimum Off-Time	toff	V _{FB} = +1V		0.7	1.3	μS
LBI Threshold Voltage	V _{LBI}	$V_{BATT} = +2V$		0.8	0.90	V
LBI Tilleshold Voltage	v LBI	V _{BATT} = LBI		0.875	0.975	
LBI Input Current	I _{LBI}	$V_{LBI} = +0.8V$			100	nA
L BO L our Output Voltage		$V_{BATT} = V_{LBI} = +0.975$ sinking 20µA (50 Ω typ	*		0.1	V
LBO Low Output Voltage		$V_{BATT} = V_{LBI} = +1.1V$, sinking 100μA (25Ω typ)			0.1	V
LBO Off-Leakage Current		V _{LBO} = +5.5V			100	nA
	\/,,				0.2 ×	
CLIDAL languat Valtagra	VIL				V _{BATT}	V
SHDN Input Voltage	VIH			0.8×		v
	VIH			VBATT		
Shutdown Input Current		V _{SHDN} = 0 and +5.5V			100	nA

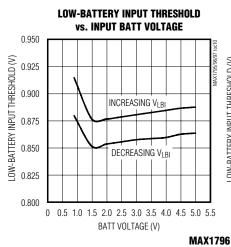

Note 1: Operating Voltage: Since the regulator is bootstrapped to the output, once started it will operate down to a 0.7V input.

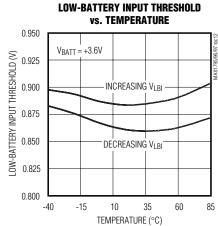
Note 2: Device is bootstrapped (power to IC comes from OUT). This correlates directly with the actual battery supply current.

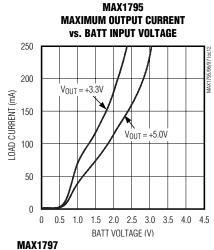
Note 3: Specifications to -40°C are guaranteed by design, not production tested.

Typical Operating Characteristics

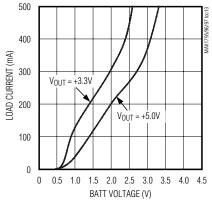
(L = 22 μ H, C_{IN} = 47 μ F, C_{OUT} = 47 μ F, T_A = +25°C, unless otherwise noted.)

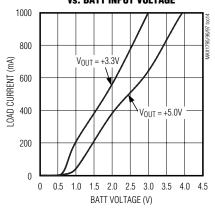

LOAD CURRENT (mA)

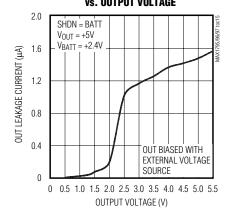

BATT VOLTAGE (V)

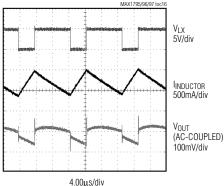

BATT VOLTAGE (V)

Typical Operating Characteristics (continued)

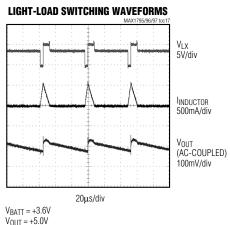

(L = 22 μ H, C_{IN} = 47 μ F, C_{OUT} = 47 μ F, T_A = +25°C, unless otherwise noted.)

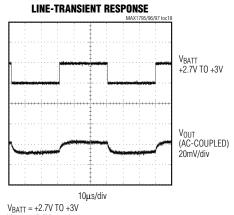



MAXIMUM OUTPUT CURRENT vs. Batt input voltage


MAXIMUM OUTPUT CURRENT vs. BATT INPUT VOLTAGE

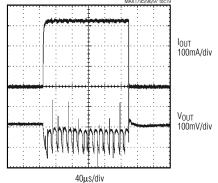
OUT LEAKAGE CURRENT vs. OUTPUT VOLTAGE

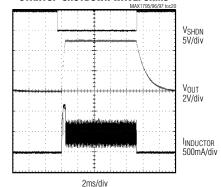

HEAVY-LOAD SWITCHING WAVEFORMS


 $V_{IN} = +3.6V$ $V_{OUT} = +5.0V$ $I_{LOAD} = 400 \text{mA}$

Typical Operating Characteristics (continued)

(L = 22 μ H, C_{IN} = 47 μ F, C_{OUT} = 47 μ F, T_A = +25°C, unless otherwise noted.)




 $V_{OUT} = +5.0V$ NO LOAD

LOAD-TRANSIENT RESPONSE

 $V_{BATT} = +2.4V$ V_{OUT} = +3.3V I_{LOAD} = 0 TO 325mA

STARTUP-SHUTDOWN WAVEFORMS

 $V_{BATT} = +2.4V$ $V_{OUT} = +5.0V$ $I_{LOAD} = 200mA$

Pin Description

PIN	NAME	FUNCTION			
1	LBI	Low-Battery Comparator Input. Internally set to trip at +0.85V. This function remains operational in shutdown.			
2	FB	Dual-Mode™ Feedback Input. Connect to GND for preset 5.0V output. Connect to OUT for prese 8.3V output. Connect a resistive voltage-divider from OUT to GND to adjust the output voltage fro to 5.5V.			
3	LBO	Low-Battery Comparator Output, Open-Drain Output. LBO is low when $V_{LBI} < 0.85V$. This function remains operational in shutdown.			
4	SHDN	Shutdown Input. If SHDN is high, the device is in shutdown mode, OUT is high impedance, and LBI/LBO are still operational. Connect shutdown to GND for normal operation.			
5	GND	Ground			
6	LX	Inductor Connection			
7	OUT	Power Output. OUT provides bootstrap power to the IC.			
8	BATT	Battery Input and Damping Switch Connection			

Detailed Description

The MAX1795/MAX1796/MAX1797 compact step-up DC-DC converters start up with voltages as low as 0.85V and operate with an input voltage down to +0.7V. Consuming only 25µA of quiescent current, these devices have an internal synchronous rectifier that reduces cost by eliminating the need for an external diode and improves overall efficiency by minimizing losses in the circuit (see *Synchronous Rectification* section for details). The internal N-channel MOSFET power switch resistance is typically 0.17 Ω , which minimizes losses. The LX switch current limits of the MAX1795/MAX1796/MAX1797 are 0.25A, 0.5A, and 1A, respectively.

All three devices offer Maxim's proprietary True-Shutdown circuitry, which disconnects the output from the input in shutdown and puts the output in a high impedance state. These devices also feature Maxim's proprietary LX-damping circuitry, which reduces EMI in noise-sensitive applications. For additional in-system flexibility, the LBI/LBO comparator remains active in shutdown. (Figure 1 is a typical application circuit).

Control Scheme

A unique minimum-off-time, current-limited control scheme is the key to the MAX1795/MAX1796/MAX1797s' low operating current and high efficiency over a wide load range. The architecture combines the high output power and efficiency of a pulse-width-modulation (PWM) device with the ultra-low quiescent cur-

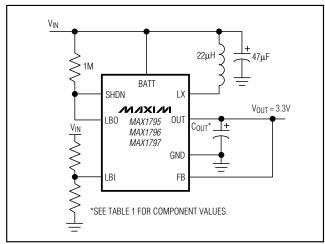


Figure 1. Typical Application Circuit

rent of a traditional pulse-skipping controller (Figure 2). Switching frequency depends upon the load current and input voltage, and can range up to 500kHz. Unlike conventional pulse-skipping DC-DC converters (where ripple amplitude varies with input voltage), ripple in these devices does not exceed the product of the switch current limit and the filter-capacitor equivalent series resistance (ESR).

Dual Mode is a trademark of Maxim Integrated Products.

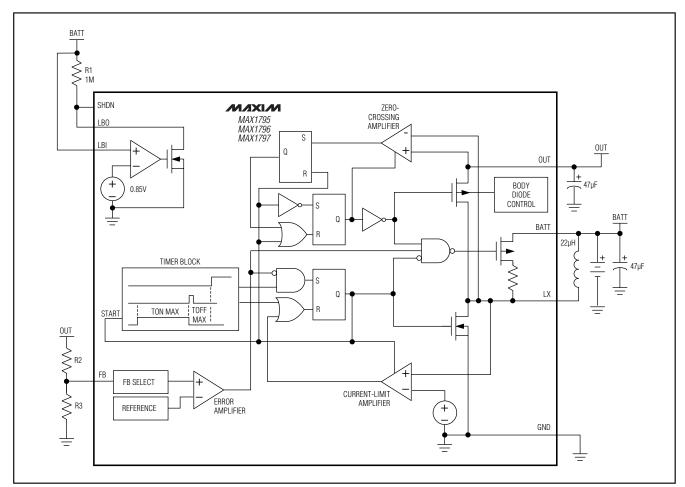


Figure 2. Functional Diagram

Synchronous Rectification

The internal synchronous rectifier eliminates the need for an external Schottky diode, reducing cost and board space. During the cycle off-time, the P-channel MOSFET turns on and shunts the MOSFET body diode. As a result, the synchronous rectifier significantly improves efficiency without the addition of an external component. Conversion efficiency can be as high as 95%, as shown in the *Typical Operating Characteristics*.

Shutdown

The device enters shutdown when V_{SHDN} is high, reducing supply current to less than 2µA. During shutdown, the synchronous rectifier disconnects the output from the input, eliminating the DC conduction path that normally exists with traditional boost converters in shutdown mode. In shutdown, OUT becomes a high-imped-

ance node. The LBI/LBO comparator remains active in shutdown.

As shown in Figure 1, the MAX1795/MAX1796/MAX1797 may be automatically shut down when the input voltage drops below a preset threshold by connecting LBO to SHDN (see Low-Battery Detection section).

BATT/Damping Switch

The MAX1795/MAX1796/MAX1797 each contain an internal damping switch to minimize ringing at LX. The damping switch connects a resistor across the inductor when the inductor's energy is depleted (Figure 3). Normally, when the energy in the inductor is insufficient to supply current to the output, the capacitance and inductance at LX form a resonant circuit that causes ringing. The ringing continues until the energy is dissipated through the series resistance of the inductor. The damping switch supplies a path to quickly dissi-

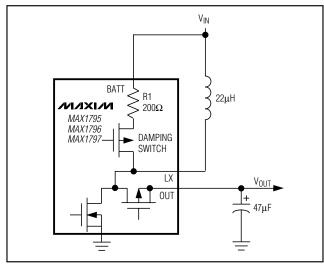


Figure 3. Simplified Diagram of Inductor Damping Switch

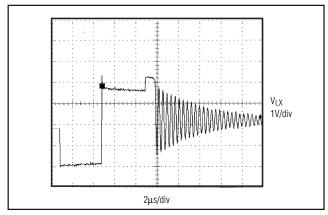


Figure 4. LX Ringing for Conventional Step-Up Converter (without Damping Switch)

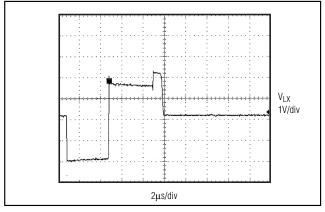


Figure 5. LX Waveform with Damping Switch

pate this energy, minimizing the ringing at LX. Damping LX ringing does not reduce V_{OUT} ripple, but does reduce EMI (Figures 3, 4, and 5).

Setting the Output Voltage

Vout can be set to 3.3V or 5.0V by connecting the FB pin to GND (5V) or OUT (3.3V). To adjust the output voltage, connect a resistive voltage-divider from OUT to FB to GND (Figure 6). Choose a value less than $250 \text{k}\Omega$ for R2.

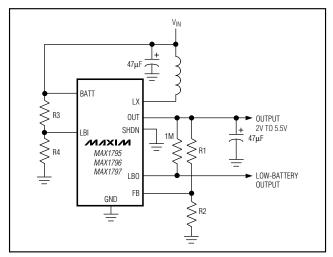


Figure 6. Setting an Adjustable Output

Use the following equation to calculate R1:

$$R1 = R2 [(VOUT / VFB) - 1]$$

where V_{FB} = +1.245V, and V_{OUT} may range from +2V to +5.5V.

Low-Battery Detection

The MAX1795/MAX1796/MAX1797 each contain an onchip comparator for low-battery detection. If the voltage at LBI is above 0.85V, LBO (an open-drain output) sinks current to GND. If the voltage at LBI is below 0.85V, LBO goes high impedance. The LBI/LBO function remains active even when the part is in shutdown.

Connect a resistive voltage-divider to LBI from BATT to GND. The low-battery monitor threshold is set by two resistors, R3 and R4 (Figure 6). Since the LBI bias current is typically 2nA, large resistor values (R4 up to $250k\Omega$) can be used to minimize loading of the input supply.

Calculate R3 using the following equation:

R3 = R4[(VTRIP / 0.85V) - 1]

VTRIP is the input voltage where the low-battery detector output goes high impedance.

For single-cell applications, LBI may be connected to the battery. When V_{BATT} <1.0V>, the LBI threshold increases to 0.925V (see *Typical Operating Characteristics*).

Connect a pullup resistor of $100k\Omega$ or greater from LBO to OUT for a logic output. LBO is an open-drain output and can be pulled as high as 6V regardless of the voltage at OUT. When LBI is below the threshold, the LBO output is high impedance. If the low-battery comparator is not used, ground LBI and LBO.

__Applications Information

Inductor Selection

An inductor value of 22µH performs well in most applications. The MAX1795/MAX1796/MAX1797 will also work with inductors in the 10µH to 47µH range. Smaller inductance values typically offer a smaller physical size for a given series resistance, allowing the smallest overall circuit dimensions, but have lower output current capability. Circuits using larger inductance values exhibit higher output current capability, but are physically larger for the same series resistance and current rating.

The inductor's incremental saturation current rating should be greater than the peak switch-current limit, which is 0.25A for the MAX1795, 0.5A for the MAX1796, and 1A for the MAX1797. However, it is generally acceptable to bias the inductor into saturation by as much as 20% although this will slightly reduce efficiency. Table 1 lists some suggested components for typical applications.

The inductor's DC resistance significantly affects efficiency. Calculate the maximum output current (IOUT(MAX)) as follows, using inductor ripple current (IRIP) and duty cycle (D):

$$\begin{split} I_{RIP} &= \frac{V_{OUT} + I_{LIM} \times (R_{PFET} + L_{ESR}) - V_{BATT}}{\left[\frac{L}{t_{OFF}} + \frac{(R_{PFET} + L_{ESR})}{2}\right]} \\ D &= \frac{V_{OUT} + \left(I_{LIM} - \frac{I_{RIP}}{2}\right)(R_{PFET} + L_{ESR}) - V_{BATT}}{V_{OUT} + \left(I_{LIM} - \frac{I_{RIP}}{2}\right)(R_{PFET} - R_{NFET} + L_{ESR})} \end{split}$$

 $I_{OUT(MAX)} = \left(I_{LIM} - \frac{I_{RIP}}{2}\right)(1-D)$

where: IRIP = Inductor ripple current (A)

Vout = Output voltage (V)

ILIM = Device current limit (0.25A, 0.5A, or 1A)

RPFET = On-resistance of P-channel MOSFET

 (Ω) (typ 0.27 Ω)

 $L_{ESR} = ESR \text{ of Inductor } (\Omega) \text{ (typ } 0.095\Omega)$

V_{BATT} = Input voltage (V)

 $L = Inductor value in \mu H$

tOFF = LX switch's off-time (µs) (typ 1µs)

D = Duty cycle

RNFET = On-resistance of N-channel MOSFET (Ω) (typ 0.17 Ω)

IOUT(MAX) = Maximum output current (A)

Capacitor Selection

Table 1 lists suggested tantalum or polymer capacitor values for typical applications. The ESR of both input bypass and output filter capacitors affects efficiency and output ripple. Output voltage ripple is the product of the peak inductor current and the output capacitor ESR. High-frequency output noise can be reduced by connecting a 0.1µF ceramic capacitor in parallel with the output filter capacitor. (See Table 2 for a list of suggested component suppliers.)

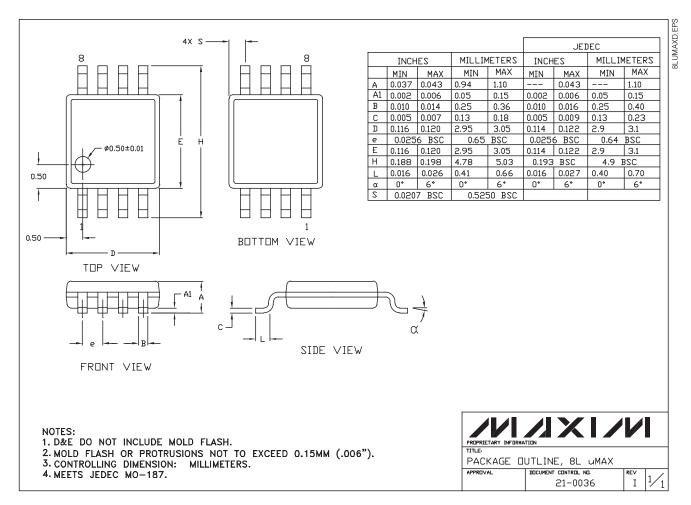
PC Board Layout and Grounding

Careful printed circuit layout is important for minimizing ground bounce and noise. Keep the IC's GND pin and the ground leads of the input and output filter capacitors less than 0.2in (5mm) apart. In addition, keep all connections to the FB and LX pins as short as possible. In particular, when using external feedback resistors, locate them as close to FB as possible. To maximize output power and efficiency and minimize output ripple voltage, use a ground plane and solder the IC's GND pin directly to the ground plane.

and

Table 1. Suggested Components for Typical Applications

COMPONENT	COMPONENT VALUE (MAX1797, 1A CURRENT LIMIT)	COMPONENT VALUE (MAX1796, 0.5A CURRENT LIMIT)	COMPONENT VALUE (MAX1795, 0.25A CURRENT LIMIT)	
			Sumida CR32-220, 22μH	
	Sumida CDRH6D28-220, 22μH	Sumida CDRH4D28-220, 22μH	Sumida CR32-100, 10μH	
Inductor			Murata CQH3C100K34, 10μH	
inductor		Coilcraft DS1608C-223, 22µH	Murata CQH4N100K(J)04, 10μH	
	Coilcraft DS3316P-223, 22μH		Coilcraft DS1608C-223, 22μH	
			Coilcraft DS1608C-103, 10μH	
Input Capacitor	Sanyo POSCAP 6TPA47M, 47μF	Sanyo POSCAP 6TPA47M, 47μF	Sanyo POSCAP 6TPA47M, 47μF	
Output Conneitor	AVX TPSD476M016R0150, 47μF	AVX TPSD226M016R0150, 22μF	AVX TPSD106M016R0150, 10μF	
Output Capacitor	Taiyo Yuden UMK316BI150KH, 0.1μF	Taiyo Yuden UMK316BI150KH, 0.1μF	Taiyo Yuden UMK316BI150KH, 0.1μF	


Table 2. Component Suppliers

COMPANY	PHONE	FAX
AVX	USA 803-946-0690	USA 803-626-3123
Coilcraft	USA 847-639-6400	USA 847-639-1238- 469
Coiltronics	USA 561-241-7876	USA 561-241-9339
Murata	USA 814-237-1431 1-800-831-9172	USA 814-238-0490
Nihon	USA 805-867-2555 Japan 81-3-3494- 7411	USA 805-867-2556 Japan 81-3-3494- 7414
Sanyo	USA 619-661-6835 Japan 81-7-2070- 6306	USA 619-661-1055 Japan 81-7-2070- 1174
Sprague	USA 603-224-1961	USA 603-224-1430
Sumida	USA 647-956-0666 Japan 81-3-3607- 5111	USA 647-956-0702 Japan 81-3-3607- 5144
Taiyo Yuden	USA 408-573-4150	USA 408-573-4159

Chip Information

TRANSISTOR COUNT: 1100 PROCESS: BICMOS

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.