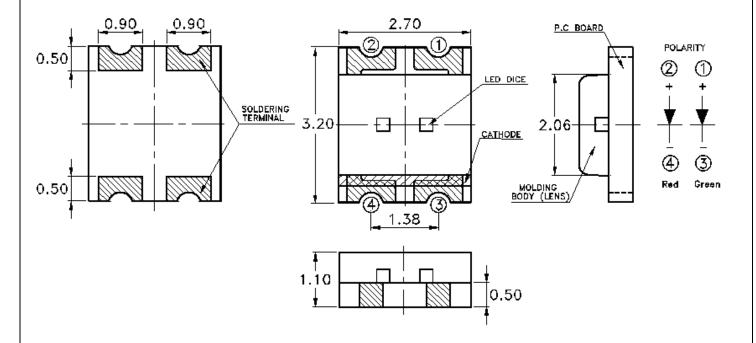


Spec No.: DS-22-98-0006 Effective Date: 10/14/2008 Revision: B

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics No.90,Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto



Property of Lite-On Only

Features

- * Meet ROHS, Green Product.
- * Dual color chip LED.
- * Package in 8mm tape on 7" diameter reels.
- * Compatible with automatic placement equipment.
- * Compatible with infrared and vapor phase reflow solder process.
- * EIA STD package.
- * I.C. compatible.

Package Dimensions

Devices

Part No.	Lens	Source Color	Pin Assignment
LTST C155CEVT	Water Clear	GaP on GaP Green	1,3
LTST-C155GEKT	Water Clear	GaAsP on GaP Red	2,4

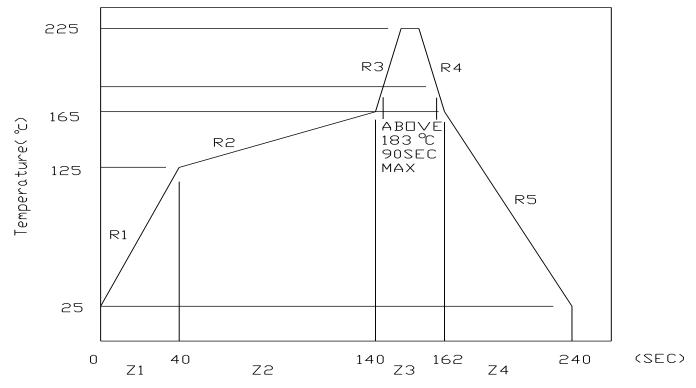
Notes:

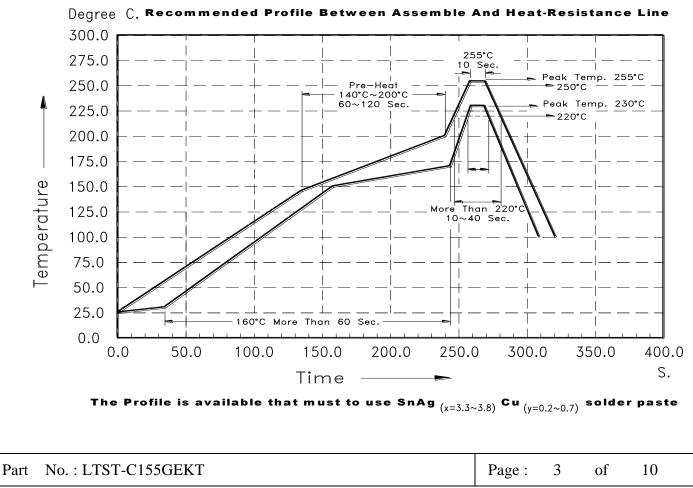
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.10 mm (.004") unless otherwise noted.

LITEON LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Absolute Maximum Ratings At Ta=25°C


Denemator	LTST-C1	T Luit		
Parameter	Green	Red	Unit	
Power Dissipation	100	100	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	120	120	mA	
DC Forward Current	30	30	mA	
Derating Linear From 25°C	0.6	0.6	mA/°C	
Reverse Voltage	5	5	V	
Operating Temperature Range	-55° C to $+85^{\circ}$ C			
Storage Temperature Range	-	55° C to + 85° C		
Wave Soldering Condition	260°C For 5 Seconds			
Infrared Soldering Condition	260°C For 5 Seconds			
Vapor Phase Soldering Condition	215°C For 3 Minutes			


Property of Lite-On Only

Suggestion Profile:

(1) Suggestion IR Reflow Profile For Normal Process

(2) Suggestion IR Reflow Profile For Pb Free Process

BNS-OD-C131/A4

Property of Lite-On Only

Electrical / Optical Characteristics At Ta=25°C

Parameter	Symbol		LTST-C1	55GEKT		Test Condition	
Farameter	Symbol		Green	Red	Unit		
		MIN.	1.80	1.12		W 10 4	
Luminous Intensity	IV	TYP.	6.00	2.50	mcd	IF =10mA Note 1	
		MAX.					
Viewing Angle	201/2	TYP.	130	130	deg	Note 2 (Fig.6)	
Peak Emission Wavelength	λP	TYP.	565	630	nm	Measurement @Peak (Fig.1)	
Dominant Wavelength	λd	TYP.	569	621	nm	Note 3	
Spectral Line Half-Width	Δλ	TYP.	30	24	nm		
Forward Voltage	VF	TYP.	2.1	2.0	v	IE 20 m A	
Forward Voltage	۷F	MAX.	2.6	2.6	V	IF =20mA	
Reverse Current	IR	MAX.	10	10	μΑ	VR = 5V	
Capacitance	С	TYP.	35	20	PF	VF=0, f=1MHZ	

Notes: 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

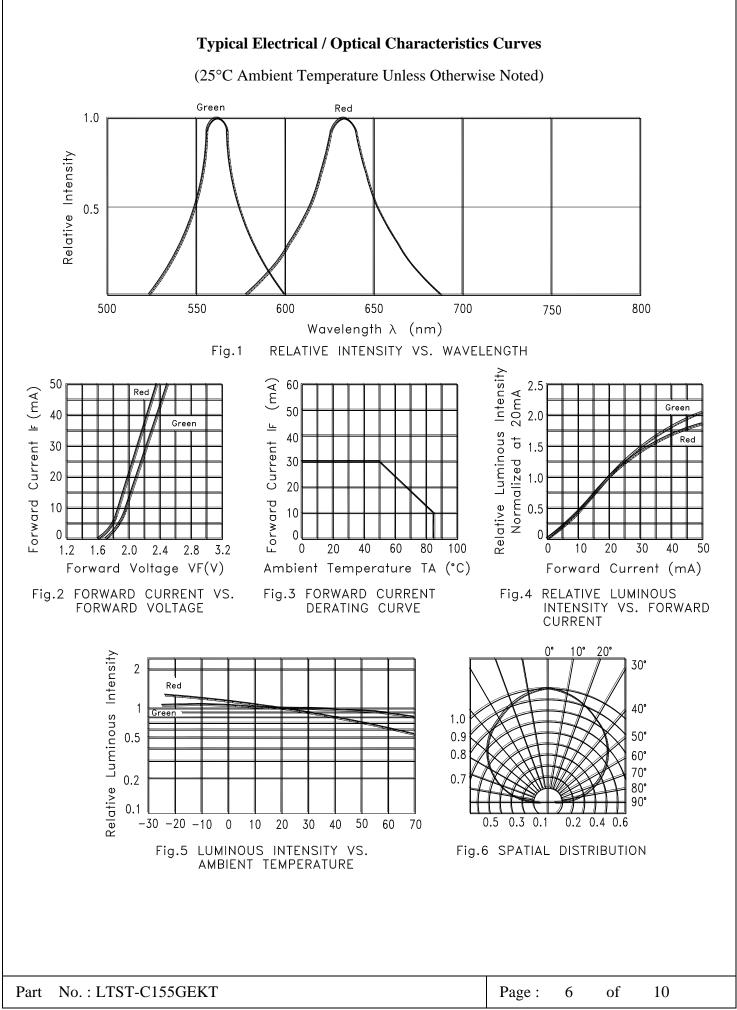
LITEON LITE-ON TECHNOLOGY CORPORATION

Property of Lite-On Only

Bin Code List

Luminous Intensity	Color : <u>Green</u> , U	Jnit : mcd @10mA
Bin Code	Min.	Max.
G	1.80	2.80
Н	2.80	4.50
J	4.50	7.10
K	7.10	11.2

Tolerance on each Intensity bin is +/-15%

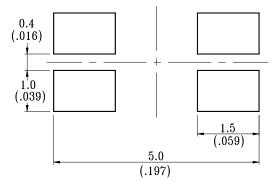

Luminous Intensi	ty Color : <u>Red</u> , U	nit : mcd @10mA
Bin Code	Min.	Max.
F	1.12	1.80
G	1.80	2.80
Н	2.80	4.50
J	4.50	7.10

Tolerance on each Intensity bin is +/-15%

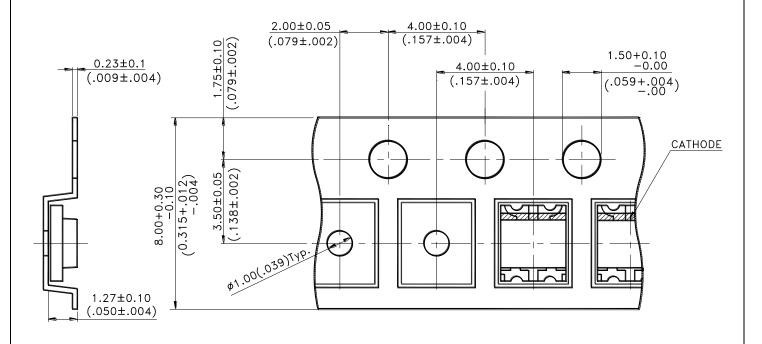
Part No. : LTST-C155GEKT	Page :	5	of	10	
--------------------------	--------	---	----	----	--

Property of Lite-On Only

BNS-OD-C131/A4



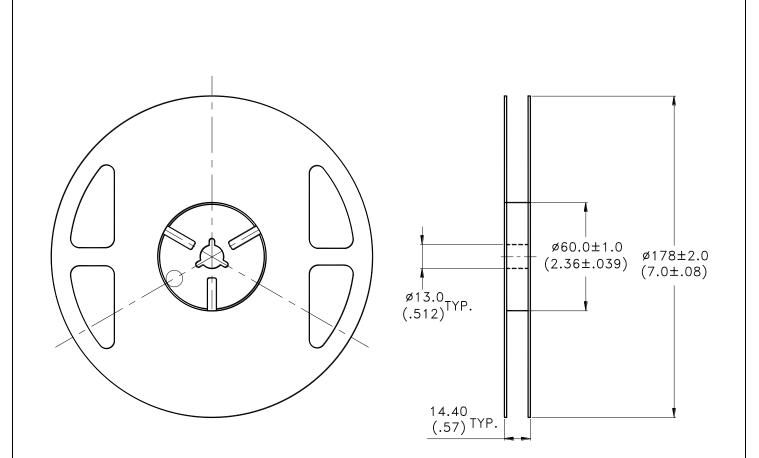
Property of Lite-On Only


Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package. If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

Package Dimensions Of Tape And Reel


Notes:

1. All dimensions are in millimeters (inches).

Part No. : LTST-C155GEKT

Property of Lite-On Only

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 7 inch reel-3000 pieces per reel.
- 3. Minimum packing quantity is 500 pcs for remainders.
- 4. The maximum number of consecutive missing lamps is two.
- 5. In accordance with ANSI/EIA 481-1-A-1994 specifications.

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

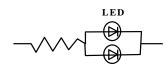
2. Storage

The storage ambient for the LEDs should not exceed 30°C temperature or 70% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week. For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient. LEDs stored out of their original packaging for more than a week should be baked at about 60 deg C for at least 24 hours before solder assembly.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering


Recommended soldering conditions:

Reflow soldering	Wave	Wave Soldering		ing iron
Pre-heat120~150°CPre-heat time120 sec. MaPeak temperature240°C Max.Soldering time10 sec. Max	Solder wave	100°C Max. 60 sec. Max. 260°C Max. 10 sec. Max.	Temperature Soldering time	300°C Max. 3 sec. Max. (one time only)

5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model B

(A) Recommended circuit.

(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED. Suggestions to prevent ESD damage:

- Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- All devices, equipment, and machinery must be properly grounded.
- Work tables, storage racks, etc. should be properly grounded.
- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

Part No. : LTST-C155GEKT	Page :	9	of	10	
--------------------------	--------	---	----	----	--

BNS-OD-C131/A4

Property of Lite-On Only

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or " no lightup " at low currents.

To verify for ESD damage, check for "lightup" and Vf of the suspect LEDs at low currents. The Vf of "good" LEDs should be $\geq 2.0V@0.1mA$ for InGaN product and $\geq 1.4V@0.1mA$ for AlInGaP product.

7. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)*@20mA.	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
Endurance Test	High Temperature High Humidity Storage	IR-Reflow In-Board, 2 Times Ta= $65\pm5^{\circ}$ C, RH= $90 \sim 95\%$ *Test Time= 240HRS±2HRS	MIL-STD-202F:103B(1980) JIS C 7021:B-11(1982)
	High Temperature Storage	Ta= 105±5°C *Test Time= 1000HRS (-24HRS,+72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= -55±5°C *Test Time=1000HRS (-24HRS,+72H RS)	JIS C 7021:B-12 (1982)
	Temperature Cycling	105° C ~ 25° C ~ -55° C ~ 25° C 30mins 5mins 30mins 5mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021:A-4(1982)
Environmental Test	Thermal Shock	IR-Reflow In-Board, 2 Times $85 \pm 5^{\circ}$ C $\sim -40^{\circ}$ C $\pm 5^{\circ}$ C10mins10mins10 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
	Solder Resistance	T.sol= $260 \pm 5^{\circ}$ C Dwell Time= 10 ± 1 secs	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021:A-1(1982)
	IR-Reflow Normal Process	Ramp-up rate(183° C to Peak) +3°C/ second max Temp. maintain at $125(\pm 25)^{\circ}$ C 120 seconds max Temp. maintain above 183° C 60-150 seconds Peak temperature range 235° C +5/-0°C Time within 5°C of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate +6°C/second max	MIL-STD-750D:2031.2(1995) J-STD-020(1999)
	IR-Reflow Pb Free Process	Ramp-up rate(217°C to Peak) +3°C/ second max Temp. maintain at 175(\pm 25)°C 180 seconds max Temp. maintain above 217°C 60-150 seconds Peak temperature range 260°C +0/-5°C Time within 5°C of actual Peak Temperature (tp) 20-40 seconds Ramp-down rate +6°C/second max	MIL-STD-750D:2031.2(1995) J-STD-020(1999)
	Solderability	T.sol= $235 \pm 5^{\circ}$ C Immersion time 2 ± 0.5 sec Immersion rate 25 ± 2.5 mm/sec Coverage $\geq 95\%$ of the dipped surface	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) IEC 68 Part 2-20 JIS C 7021:A-2(1982)

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

Part No. : LTST-C155GEKT	Page :	10	of	10	
--------------------------	--------	----	----	----	--