TRIDONIC

Compact fixed output

Driver LC 25/30/35/40W 600/700/800/900mA fixC C ADV
advanced series

Product description

- Fixed output built-in LED driver
- Constant current LED driver
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Output current 600, 700, 800 or 900 mA
- Max. output power $26.5,31,36$ or 40.5 W
- Nominal lifetime up to $50,000 \mathrm{~h}$
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20

Functions

- Overtemperature protection
- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage 1 kV
- Surge protection voltage 1 kV (L to N)
- Surge protection voltage 2 kV (L/N to earth)

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 4

Technical data

Rated supply voltage	220-240 V
AC voltage range	198-264V
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	320 V AC, 1 h
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 20 \%
Output current tolerance ${ }^{\text {® }}$	± 7.5 \%
Typ. current ripple (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\pm 5 \%$
Output $\mathrm{P}_{\text {St }} \mathrm{LM}$ (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Max. output voltage	60 V
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.2 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta	$-20 \ldots+50^{\circ} \mathrm{C}$
Ambient temperature ta (at lifetime 50,000 h)	$40^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Lifetime	up to 50,000 h
Guarantee (conditions at www.tridonic.com)	5 years
Dimensions L $\times W \times H$	$105 \times 70 \times 28.3 \mathrm{~mm}$

Ordering data

Type	Article number	Packaging, carton	Packaging, pallet	Weight per pc.
LC 25W 600mA fixC C ADV	$\mathbf{2 8 0 0 2 4 9 0}$	$15 \mathrm{pc}(\mathrm{s})$.	$2,700 \mathrm{pc}(\mathrm{s})$.	0.142 kg
LC 30W 700mA fixC C ADV	$\mathbf{2 8 0 0 2 4 9 1}$	$15 \mathrm{pc}(\mathrm{s})$.	$2,700 \mathrm{pc}(\mathrm{s})$.	0.144 kg
LC 35W 800mA fixC C ADV	$\mathbf{2 8 0 0 2 4 9 2}$	$15 \mathrm{pc}(\mathrm{s})$.	$2,700 \mathrm{pc}(\mathrm{s})$.	0.146 kg
LC 40W 900mA fixC C ADV	$\mathbf{2 8 0 0 2 4 9 3}$	$15 \mathrm{pc}(\mathrm{s})$.	$2,700 \mathrm{pc}(\mathrm{s})$.	0.148 kg

Specific technical data

Type Output current ${ }^{\text {® }}$	Input current (at 230 V , 50 Hz , full load)	Input power (at 230 V , 50 Hz , full load)	Output power range	λ at full load ${ }^{\text {(}}$	$\begin{gathered} \text { Efficiency } \\ \text { at full } \\ \text { load }^{\oplus} \end{gathered}$	$\begin{gathered} \lambda \text { at min. } \\ \text { load }^{\oplus} \end{gathered}$	$\begin{aligned} & \text { Efficiency } \\ & \text { at min. } \\ & \text { load }^{\oplus} \end{aligned}$	Min. forward voltage	Max forward voltage	Max. output peak current at full load ${ }^{\text {(2 }}$	Max. output peak current at min. load ${ }^{\text {² }}$	Max. casing temperature tc
LC 25W 600mA fixC C ADV 600 mA	0.133 A	30.0 W	$13.0-26.5 \mathrm{~W}$	0.95	88 \%	0.9C	81\%	21.4 V	44 V	774 mA	900 mA	$65^{\circ} \mathrm{C}$
LC 30W 700mA fixC C ADV 700 mA	0.153 A	34.3 W	$15.0-31.0 \mathrm{~W}$	0.95	88 \%	0.9C	82 \%	21.4 V	44 V	903 mA	$1,000 \mathrm{~mA}$	$65^{\circ} \mathrm{C}$
LC 35W 800mA fixC C ADV 800 mA	0.181 A	40.0 W	$20.0-36.0 \mathrm{~W}$	0.95	89 \%	0.9C	83\%	25.0 V	45 V	1,032 mA	1,100 mA	$70^{\circ} \mathrm{C}$
LC 40W 900mA fixC C ADV 900 mA	0.210 A	45.3 W	$22.5-40.5 \mathrm{~W}$	0.95	89%	0.9 C	83\%	25.0 V	45 V	1,161 mA	1,200 mA	$70^{\circ} \mathrm{C}$

[^0]
Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver reduces the LED output current or in burst modus. After elimination of the overload the nominal operation is restored automatically.

Overtemperature protection

The LED driver will reduces the LED output current or in burst working.

Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switched off. After elimination of the short-circuit fault the LED driver will recover automatically.

No-load operation

The LED driver works in burst working mode to limit output voltage which allows the application to be able to work safely when LED string opens due to a failure.

Output over voltage protection

The LED driver will work in burst protection mode to limit output voltage even in single fault condition.

Housing fulfils requirements for reinforced insulation according EN 60598-1.

Glow-wire test

according to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 1 kV surge voltage.
Air and creepage distance must be maintained.

Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 10 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

Conditions of use and storage

Humidity: 5% up to max. 85%,
not condensed
(max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (†a) before they can be operated.

Expected lifetime				
Type	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$
LC 25/30W 600/700mA fixC C	tc	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	\times
ADV	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times
LC 35/40W 800/900mA fixC C	tc	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	\times
ADV	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times

The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	${ }_{\text {max }}$	Time
LC 25W 600mA fixC C ADV	20	32	40	51	11	19	24	30	20 A	$200 \mu \mathrm{~s}$
LC 30W 700 mA fixC C ADV	20	32	40	51	11	19	24	30	20 A	$200 \mu \mathrm{~s}$
LC 35W 800mA fixC C ADV	20	32	40	51	11	19	24	30	25 A	$200 \mu \mathrm{~s}$
LC 40W 900 mA fixC C ADV	20	32	40	51	11	19	24	30	25 A	$200 \mu \mathrm{~s}$

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5	7.	9.	11.
LC 25W 600mA fixC C ADV	<9	<6	<3	<3	<3	<3
LC 30W 700mA fixC C ADV	<10	<8	<3	<3	<3	<3
LC 35W 800mA fixC C ADV	<8	<5	<3	<3	<3	<3
LC 40W 900mA fixC C ADV	<8	<5	<3	<3	<3	<3

Wiring diagram

$$
220-240 \mathrm{~V}
$$

Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or 1.414×1500 V dc). To avoid damage to the electronic devices this test must not be conducted.

Conditions of use

The LED driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

Wiring type and cross section

The input wiring can be stranded wires with ferrules with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$ or with solid wires with a cross section of $0.5-2.5 \mathrm{~mm}^{2}$.
Strip 9-10 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.

The output wiring can be done with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.

Input wiring
Output wiring

wire preparation: $0.5-1.5 \mathrm{~mm}^{2}$

Release of the wiring

Press down the "push button" and remove the cable from front.

Input terminal

Output terminal

Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output wires is 2 m .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

Earth connection

The earth connection is conducted as protection earth (PE). If the
LED driver will be earthed, protection earth (PE) has to be used.
There is no earth connection required for the functionality of the LED driver. Earth connection is recommended to improve following behaviour.

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

Diagrams LC 25W 600mA fixC C ADV at 230 V / 50 Hz

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

Diagrams LC 30W 700mA fixC C ADV at 230 V / 50 Hz

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

Diagrams LC 35W 800mA fixC C ADV at 230 V / 50 Hz

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

Diagrams LC 40W 900mA fixC C ADV at 230 V / 50 Hz

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

[^0]: ${ }^{1}$ Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$
 (2) The trend between min. and full load is linear.
 ${ }^{3}$ Output current is mean value.

