TRIDONIC

LED driver
Compact fixed output

Driver LC 15W 300/350mA fixC SC SNC2

essence series

Typical applications

- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application

\rightarrow

Standards, page 4
Wiring diagrams and installation examples, page 4

TRIDONIC
 RoHS

LED driver
Compact fixed output

Driver LC 15W 300/350mA fixC SC SNC2
essence series

Technical data

Rated supply voltage	220-240V
AC voltage range	198-264V
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	320 V AC, 1 h
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 110 \%
Output current tolerance ${ }^{\text {® }}$	± 7.5 \%
Typ. output LF current ripple at full load	$\pm 5 \%$
Output $\mathrm{P}_{\text {St }} \mathrm{LM}$ (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta	$-20 \ldots+50^{\circ} \mathrm{C}$
Ambient temperature ta (at lifetime 50,000 h)	$40^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Lifetime	up to 50,000 h
Guarantee (conditions at www.tridonic.com)	5 years
$\underline{\text { Dimensions } \mathrm{L} \times \mathrm{W} \times \mathrm{H}}$	$70 \times 43 \times 22.5 \mathrm{~mm}$

Specific technical data

Type	Output current ${ }^{(1)}$	Input current (at 230 V , 50 Hz , full load)	Max. input power	Typ. power consumption (at 230 V , 50 Hz , full load)	Output power range	λ at full load ${ }^{(1)}$	$\begin{aligned} & \text { Efficiency } \\ & \text { at full } \\ & \text { load }^{\oplus} \end{aligned}$	λ at min. load ${ }^{\left({ }^{(}\right)}$	$\begin{aligned} & \text { Efficiency } \\ & \text { at min. } \\ & \text { load }^{\oplus} \end{aligned}$	Min. forward voltage	Max. forward voltage	Max. output voltage	Max. output peak current ${ }^{(2)}$	Max. casing temperature tc
LC 15/300/50 fixC SC SNC2	300 mA	145 mA	18 W	17.7 W	8.4-15.0 W	0.55 C	87 \%	0.55C	85 \%	28 V	50 V	85 V	340 mA	$80^{\circ} \mathrm{C}$
LC 15/350/43 fixC SC SNC2	350 mA	145 mA	18 W	17.7 W	$8.8-15.1$ W	0.55 C	86 \%	0.55C	84 \%	25 V	43 V	85 V	400 mA	$80^{\circ} \mathrm{C}$

${ }^{(1)}$ Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
(2) The trend between min. and full load is linear.
${ }^{3}$ Output current is mean value.

Product description

- Optional strain-relief set for independent applications
- Easy and tool-free mounting to the LED driver
- Screwless cable-clamp channels
- Transforms the LED driver into a fully class II compatible LED driver (e.g. ceiling installation)
- Overall length $=$ length $L($ LED driver $)+2 \times 24.5 \mathrm{~mm}$ (strain-relief set)

Permissible cable jacket diameter: 2.2-9 mm

Ordering data

Type	Article number	Packaging carton $^{\oplus}$	Packaging outer box	Weight per pc.
ACU SC 43 $\times \mathbf{2 2 . 5 m m}$ CLIP-ON SR SET	$\mathbf{2 8 0 0 1 5 3 4}$	$10 \mathrm{pc}(\mathrm{s})$.	$200 \mathrm{pc}(\mathrm{s})$.	0.027 kg

${ }^{(1)}$ A carton of 10 pcs. is equal to 10 sets, each with 2 strain-reliefs parts.

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 60598-1
EN 62384

1.1 Glow-wire test

according to EN $61347-1$ with increased temperature of $850^{\circ} \mathrm{C}$ passed.

2. Thermal details and lifetime

2.1 Expected lifetime

Expected lifetime			
Type	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$
LC 15/300/50 fixC SC SNC2	tc	$70^{\circ} \mathrm{C}^{(1)}$	$80^{\circ} \mathrm{C}^{\oplus}$
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$
LC 15/350/43 fixC SC SNC2	tc	$70^{\circ} \mathrm{C}^{(1)}$	$80^{\circ} \mathrm{C}^{\oplus}$
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$

${ }^{\text {® }}$ Test result at max. output voltage.

The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical
components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / wiring

3.1 Circuit diagram

3.2 Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. length of output wires is 2 m
- To comply with the EMC regulations run the secondary wires (LED module) in parallel.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 10 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.8 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

4. Electrical values

4.1 Diagrams LC 15W 300mA fixC SC SNC2

4.1.1 Efficiency vs load

4.1.2 Power factor vs load

4.1.3 Input power vs load

4.1.4 Input current vs load

4.1.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}$ (0.6%) of the input current:

4.2 Diagrams LC 15W 350mA fixC SC SNC2

4.2.1 Efficiency vs load

4.2.2 Power factor vs load

4.2.3 Input power vs load

4.2.4 Input current vs load

4.2.5 THD vs load

THD without harmonic < $5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.3 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation Ø	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	1 max	Time
LC 15/300/50 fixC SC SNC2	52	67	85	104	32	41	50	62	14.5 A	114 ¢
LC 15/350/43 fixC SC SNC2	52	67	85	104	32	41	50	62	14.5 A	$114 \mu \mathrm{~s}$

These are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.4 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)
in \%

	THD	3.	5.	7.	9.	11.
LC 15/300/50 fixC SC SNC2	<110	<80	<50	<30	<30	<25
LC 15/350/43 fixC SC SNC2	<110	<80	<50	<30	<30	<25

Acc. to 6100-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches into hic-cup mode. After elimination of the short-circuit fault the LED driver will recover automatically.

5.2 No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: \quad	5% up to max. 85%,
not condensed	
(max. 56 days/year at 85%)	

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

The LED driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

6.3 Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

