TRIDONIC

LED driver

Compact fixed output

Driver LC 10W 350/500/700mA fixC C SNC

essence series

Product description

- Fixed output built-in LED driver
- Constant current LED driver
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Output current 350, 500 or 700 mA
- Max. output power 10 W
- Nominal lifetime up to $50,000 \mathrm{~h}$
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20

Functions

- Overload protection
- Short-circuit protection
- No-load protection

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 4

TRIDONIC
LED driver
Compact fixed output

Driver LC 10W 350/500/700mA fixC C SNC

essence series

Technical data

Rated supply voltage	$220-240 \mathrm{~V}$
AC voltage range	$198-264 \mathrm{~V}$
Mains frequency	$50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$<20 \%$
Output current tolerance ${ }^{(3)}$	$\pm 7.5 \%$
Typ. current ripple (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\pm 40 \%$
Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Turn off time (at 230 V, 50 Hz, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta	$-20 \ldots+50{ }^{\circ} \mathrm{C}$
Ambient temperature ta (at lifetime $50,000 \mathrm{~h})$	$40{ }^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Lifetime	$\mathrm{up} \mathrm{to} 50,000 \mathrm{~h}$
Guarantee (conditions at www.tridonic.com)	5 years
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$80 \times 40 \times 21 \mathrm{~mm}$

Ordering data

Type $^{(4)}$	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LC 10W 350mA fixC C SNC	$\mathbf{8 7 5 0 0 5 7 7}$	$25 \mathrm{pc}(\mathrm{s})$.	$1,100 \mathrm{pc}(\mathrm{s})$.	$7,700 \mathrm{pc}(\mathrm{s})$.	0.043 kg
LC 10W 500mA fixC C SNC	$\mathbf{8 7 5 0 0 5 7 8}$	$25 \mathrm{pc}(\mathrm{s})$.	$1,100 \mathrm{pc}(\mathrm{s})$.	$7,700 \mathrm{pc}(\mathrm{s})$.	0.043 kg
LC 10W 700mA fixC C SNC	$\mathbf{8 7 5 0 0 5 7 9}$	$25 \mathrm{pc}(\mathrm{s})$.	$1,100 \mathrm{pc}(\mathrm{s})$.	$7,700 \mathrm{pc}(\mathrm{s})$.	0.043 kg

Specific technical data

Type	Output current ${ }^{(3)}$	Input current (at 230 V , 50 Hz , full load)	Max. input power	Typ. power consumption (at 230 V , 50 Hz , full load)	Output power range	λ at full load ${ }^{(1)}$	```Efficiency at full load (')```	$\begin{gathered} \lambda \text { at } \\ \min . \text { load }^{\oplus} \end{gathered}$	```Efficiency at min. load ($```	Min. forward voltage	Max. forward voltage	Max. output voltage	Max. output peak current at full load ${ }^{\text {(2) }}$	Max. output peak current at min. $\mathrm{load}^{\text {² }}$	Max. casing temperature tc
LC 10W 350mA fixC C SNC	350 mA	60 mA	12.5 W	12 W	7-10 W	0.9 C	83 \%	0.85C	81 \%	20 V	28.6 V	42 V	550 mA	600 mA	$80^{\circ} \mathrm{C}$
LC 10W 500mA fixC C SNC	500 mA	60 mA	12.5 W	12 W	7-10 W	0.9 C	83%	0.85 C	80 \%	14 V	20.0 V	35 V	780 mA	820 mA	$80^{\circ} \mathrm{C}$
LC 10W 700mA fixC C SNC	700 mA	65 mA	12.5 W	12 W	7-10 W	0.9 C	81\%	0.85 C	78 \%	10 V	14.2 V	25 V	1,100 mA	1,150 mA	$80^{\circ} \mathrm{C}$

${ }^{(1)}$ Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
${ }^{3}$ The trend between min. and full load is linear.
${ }^{(3)}$ Output current is mean value.
(4) The crossed out article is phased out.

Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384

Overload protection

If the maximum load is exceeded by a defined internal limit, the LED driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED driver switches into hic-cup mode. After elimination of the short-circuit fault the LED driver will recover automatically.

No-load operation

The LED driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 10 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

Expected lifetime					
Type	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0}{ }^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$	
LC 10W 350mA fixC C SNC	tc	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	\times	
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times	
LC 10W 500mA fixC C SNC	tc	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	\times	
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times	
LC 10W 700mA fixC C SNC	tc	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	\times	
	Lifetime	$50,000 \mathrm{~h}$	$30,000 \mathrm{~h}$	\times	

Glow-wire test

according to EN $61347-1$ with increased temperature of $850^{\circ} \mathrm{C}$ passed.

Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

Conditions of use and storage

Humidity:	5% up to max. 85%, not condensed (max. 56 days/year at $85 \%)$
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

The LED drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10%.

The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	1 max	Time
LC 10W 350mA fixC C SNC	120	160	200	240	120	160	200	240	8 A	$80 \mu \mathrm{~s}$
LC 10W 500mA fixC C SNC	120	160	200	240	120	160	200	240	8 A	$80 \mu \mathrm{~s}$
LC 10W 700mA fixC C SNC	120	160	200	240	120	160	200	240	8 A	$80 \mu \mathrm{~s}$

[^0]Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

	THD	3.	5.	7.	9.	11.
LC 10W 350mA fixC C SNC	<20	<15	<8	<8	<8	<5
LC 10W 500mA fixC C SNC	<20	<10	<8	<6	<6	<6
LC 10W 700mA fixC C SNC	<20	<15	<10	<8	<5	<5

Wiring diagram

220-240 V
$50 / 60 \mathrm{~Hz}$

Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V ac (or $1.414 \times 1500 \mathrm{~V}$ dc). To avoid damage to the electronic devices this test must not be conducted.

Conditions of use

The LED driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.
If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

Wiring type and cross section

For wiring use stranded wire with ferrules or solid wire from $0.5-1.5 \mathrm{~mm}^{2}$ Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.

Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED driver and other leads (ideally 5 - 10 cm distance)
- Max. length of output wires is 2 m .
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected agains \dagger short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

Release of the wiring

Press down the "push button" and remove the cable from front.

Maximum number of switching cycles

All LED driver are tested with 50,000 switching cycles.

Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.

Diagrams LC 10W 350mA fixC C SNC

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

Diagrams LC 10W 500mA fixC C SNC

Efficiency vs load

Input power vs load

THD vs load
Power factor vs load

Input current vs load

Load [\%]
THD vs load

Diagrams LC 10W 700mA fixC C SNC

Efficiency vs load

Input power vs load

THD vs load

Power factor vs load

Input current vs load

[^0]: These are max. values calculated out of continuous current running the device on full load.
 There is no limitation due to inrush current.
 If load is smaller than full load for calculation only continuous current has to be considered.

