TRIDONIC

Compact fixed output

Driver LC 10W 250mA fixC SC ADV2

advanced series

Product description

- Fixed output LED Driver
- Can be either used build-in or independent with clip-on strain-relief (see accessory)
- Independent LED Driver with cable clamps
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- Constant current LED Driver
- Output current 250 mA
- Max. output power 10.5 W
- Nominal lifetime up to 50,000 h
- 5 years guarantee (conditions at www.tridonic.com)

Housing properties

- Casing: polycarbonat, white
- Type of protection IP20

Functions

- Overload protection
- Short-circuit protection
- No-load protection

Typical applications

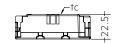
- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application

Standards, page 4

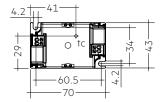
Wiring diagrams and installation examples, page 4

www.tridonic.com

$\underline{\mathsf{IP20}}\ \mathsf{SELV} \ \bigcirc\ \overline{\forall}\ \Theta\ \underline{\mathsf{A}}\ \underline{\mathsf{C}}\ \underline{\mathsf{C}}\ \mathsf{EHI}\ \mathsf{C}\ \mathbf{C}\ \underline{\mathscr{C}}$


RoHS

Driver LC 10W 250mA fixC SC ADV2


advanced series

Technical data

recilifical data	
Rated supply voltage	220 – 240 V
AC voltage range	198 – 264 V
Mains frequency	50 / 60 Hz
Overvoltage protection	320 V AC, 1 h
THD (at 230 V, 50 Hz, full load)	< 15 %
Output current tolerance [®]	± 7.5 %
Typ. output LF current ripple at full load [®]	± 3 %
Output P _{S1} ^{LM} (at full load)	≤ 1
Output SVM (at full load)	≤ 0.4
Starting time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Turn off time (at 230 V, 50 Hz, full load)	≤ 0.5 s
Hold on time at power failure (output)	0 s
Ambient temperature ta	-20 +50 °C
Ambient temperature ta (at lifetime 50,000 h)	50 °C
Storage temperature ts	-40 +80 °C
Mains burst capability	1 kV
Mains surge capability (between L – N)	1 kV
Mains surge capability (between L/N – PE)	2 kV
Surge voltage at output side (against PE)	3 kV
Lifetime	up to 50,000 h
Guarantee (conditions at www.tridonic.com)	5 years
Dimensions L x W x H	70 x 43 x 22.5 mm

Ordering data

Type	Article	Packaging,	Packaging,	Packaging,	Weight per	
Туре	number	carton	low volume	high volume	pc.	
LC 10/250/42 fixC SC ADV2	87500941	50 pc(s).	1,300 pc(s).	7,800 pc(s).	0.046 kg	

Specific technical data

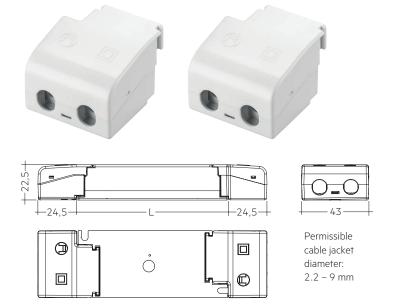
Type	Output	Input	Max.	Input power	Output	λ at	Efficiency	λ at min.	Efficiency	Min.	Max.	Max.	Max.	Max.	Max. casing
	current [®]	current	input	(at 230 V,	power	full load®	at full	load [®]	at min.	forward	forward	output	output	output	temperature tc
		(at 230 V,	power	50 Hz, full	range		load [®]		load [®]	voltage	voltage	voltage	peak	peak	
		50 Hz, full		load)									current at	current at	
		load)											full load®	$\text{min. load}^{\text{@}}$	
LC 10/250/42 fixC SC ADV2	250 mA	60 mA	12.5 W	12.2 W	7.5 – 10.5 W	0.95	86 %	0.90C	83 %	30 V	42 V	60 V	281 mA	281 mA	70 °C

Test result at 230 V, 50 Hz.

 $^{^{@}}$ The trend between min. and full load is linear and depends on load's voltage-current character.

[®] Output current is mean value.

 $^{^{\}scriptsize \textcircled{\tiny 0}}$ Typical value at full load, depends on load's voltage-current character.



Strain-relief set 43x22.5mm

Product description

- Optional strain-relief set for independent applications
- Easy and tool-free mounting to the LED driver
- Screwless cable-clamp channels
- Transforms the LED Driver into a fully class II compatible LED Driver (e.g. ceiling installation)
- Overall length = length L (LED Driver) + 2 x 24.5 mm (strain-relief set)

Ordering data

Туре	Article number	Packaging carton®	Packaging outer box	Weight per pc.
ACU SC 43x22.5mm CLIP-ON SR SET	28001534	10 pc(s).	200 pc(s).	0.027 kg

 $^{^{\}circ}$ A carton of 10 pcs. is equal to 10 sets, each with 2 strain-reliefs parts.

1. Standards

EN 55015

EN 60598-1

EN 61000-3-2

EN 61000-3-3

EN 61000-4-4

EN 61000-4-5

EN 61347-1

EN 61347-2-13

EN 61547

EN 62384

1.1 Glow-wire test

according to EN 61347-1 with increased temperature of 850 °C passed.

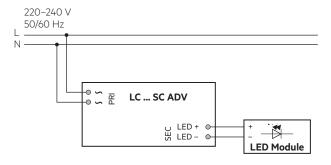
2. Thermal details and lifetime

2.1 Expected lifetime

Fy	pect	ed li	ifeti	me

Туре	ta	40℃	50 °C	
LC 10/250/42 fixC SC ADV2	tc	60°C®	70 °C [®]	
EC 10/250/42 11XC 5C ADV2	Lifetime	100,000 h	50,000 h	

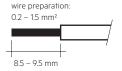
^① Test result at max. output voltage.


The LED Drivers are designed for a lifetime stated above under reference conditions and with a failure probability of less than 10 %.

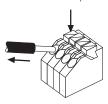
The relation of to to ta temperature depends also on the luminaire design. If the measured to temperature is approx. 5 K below to max., ta temperature should be checked and eventually critical

components (e.g. ELCAP) measured. Detailed information on request.

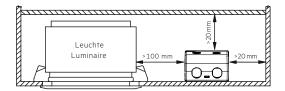
3. Installation / wiring


3.1 Circuit diagram

3.2 Wiring type and cross section


The wiring can be in stranded wires with ferrules or solid with a cross section of 0.2–1.5 mm². Strip 8.5–9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.

Use one wire for each terminal connector only.


3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally 5 – 10 cm distance)
- Max. length of output wires is 2 m.
- To comply with the EMC regulations run the secondary wires (LED module) in parallel.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

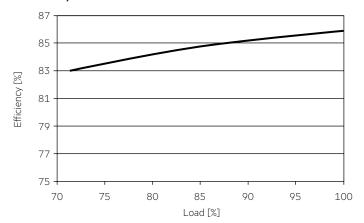
3.6 Replace LED module

- 1. Mains off
- 2. Remove LED module
- 3. Wait for 20 seconds
- 4. Connect LED module again

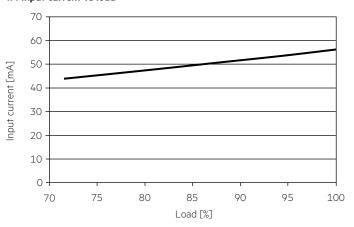
Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Installation instructions

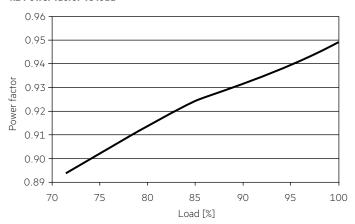
The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.


Air and creepage distance must be maintained.

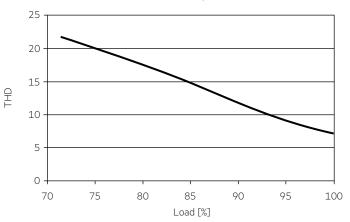
3.8 Mounting of device


Max. torque for fixing: 0.5 Nm/M4

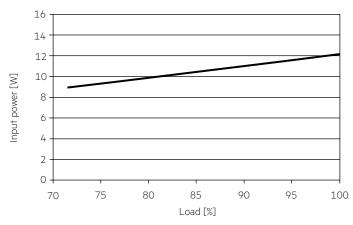
4. Electrical values


4.1 Efficiency vs load

4.4 Input current vs load



4.2 Power factor vs load



4.5 THD vs load

THD without harmonic < 5 mA (0.6 %) of the input current:

4.3 Input power vs load

4.2 Maximum loading of automatic circuit breakers in relation to inrush current

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush	current
Installation Ø	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	1.5 mm ²	1.5 mm ²	1.5 mm ²	2.5 mm ²	Imax	Time
LC 10/250/42 fixC SC ADV2	67	87	107	134	40	52	64	80	12.8 A	156 µs

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.

Actual values may differ due to used circuit breaker types and installation environment.

4.3 Harmonic distortion in the mains supply (at 230 V / 50 Hz and full load) in %

	THD	3.	5.	7.	9.	11.
LC 10/250/42 fixC SC ADV2	< 15	< 10	< 8	< 7	< 4	< 4

Acc. to 6100-3-2. Harmonics < 5 mA or < 0.6 % (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver switches off. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the maximum load is exceeded by a defined internal limit, the LED Driver will protect itself and the output current will descrease till LED flicker. After elimination of the overload, the nominal operation is restored automatically.

6. Miscellaneous

6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V $_{\rm DC}$ for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal. The insulation resistance must be at least $2\,{\rm M}\Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V $_{AC}$ (or 1.414 x 1500 V $_{DC}$). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity: 5 % up to max. 85 %,

not condensed

(max. 56 days/year at 85%)

Storage temperature: -40 $^{\circ}$ C up to max. +80 $^{\circ}$ C

The devices have to be within the specified temperature range (ta) before they can be operated.

The LED Driver is declared as inbuilt LED controlgear, meaning it is intended to be used within a luminaire enclosure.

If the product is used outside a luminaire, the installation must provide suitable protection for people and environment (e.g. in illuminated ceilings).

6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.

6.4 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.