

TITLE: Redesign of IL300 Linear optocoupler product series

DESCRIPTION OF CHANGE:

Vishay introduces a new design for the IL300 series.

This design will use a new type of construction and new dies.

As a result there is a slight difference in the dimensions of the package. The new package will be white in color and still conforms to the industry standards.

There is no change in the manufacturing location.

There are some electrical specification changes as well. The major ones are as follows:

K1, K2 gain min and max IP1, IP2 typ. values VF typ. value Reduced K3 bin categories Rise and Fall time typ. values

For a detailed comparison of the new and current design, please refer to document "Details of changes _ PCN OMV-1179-2021.pdf"

CLASSIFICATION OF CHANGE: Bill of Material (Major) / Assembly Process/Structure / Direct Materials (Major)

REASON FOR CHANGE: To transfer to a new production line according to state of the art technology with increased production capacity and to change to a more robust new construction.

EXPECTED INFLUENCE ON QUALITY RELIABILITY / PERFORMANCE: These products have undergone a comprehensive qualification and characterization program. There is no adverse effects on the quality and performance of the product.

PRODUCT CATEGORY: Optocouplers, Isolators

PART NUMBERS / SERIES / FAMILIES AFFECTED:

This PCN impacts the IL300 product series. The products are:

IL300, IL300-X007, IL300-X007T, IL300-X009T, IL300-X016, IL300-X017 IL300-3124 IL300-DEFG, IL300-DEFG-X001, IL300-DEFG-X006, IL300-DEFG-X007, IL300-DEFG-X007T, IL300-DEFG-X009T, IL300-DEFG-X016, IL300-DEFG-X017, IL300-DEFG-X017T IL300-EF, IL300-E-X006, IL300-E-X007T, IL300-E-X009T IL300-EF, IL300-EF-X007, IL300-EF-X007T, IL300-EF-X009T, IL300-EF-X016, IL300-EF-X017, IL300-EF-X017T IL300-F, IL300-F-X001, IL300-F-X007, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X001, IL300-F-X007T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X009T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X009T, IL300-F-X009T, IL300-F-X007T, IL300-F-X007T, IL300-F-X009T, IL300-F-X007T, IL300-

VISHAY BRAND(s):

VISHAY SEMICONDUCTORS

TIME SCHEDULE:		Annotations about time schedule:					
Start Shipment Date:	05-JUL-2021	Components with the change implemented could start shipping on or after the Start Shipment Date. The exact date will be a					
SAMPLES AVAILABLE BEGINNING:	19-APR-2021	function of the depletion of the existing product inventories. Final					
We need samples for evaluation: □Yes If Yes return this form to contact informa		orders can only be accepted on or before the last order date and are subject to the availability. Early ordering is strongly recommended!					
PRODUCT IDENTIFICATION:	This change ca	n be tracked by package colour					

QUALIFICATION DATA: This change has been rigorously qualified by company and industry standard qualifications. The qualification data is available upon request

This PCN is considered approved, without further notification, unless we receive specific customer concerns before: 30-JUN-2021 or as specified by contract.

ISSUED BY:

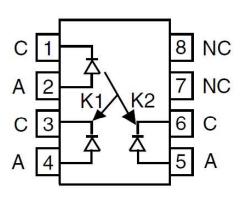
PM: Nadide Deniz Goerk,

Phone: +49 7131 7498 600

Email: Nadidedeniz.Goerk@vishay.com

For further Information, please contact your regional Vishay office.

CONTACT INFORMATION:


VISHAY Intertechnology Asia Pte. Ltd. Business Marketing Asia/Japan 25 Tampines Street 92 Keppel Building # 02-00 Singapore 528877 Phone: +65 6780 7879 Fax: +65 6780 7897 VISHAY Intertechnologies, Inc. Business Marketing The Americas - Opto 2585 Junction Avenue San Jose, California 95134-1923 United States of America Phone: +1-408-567-8358 Fax: +1 408-240-5687 VISHAY Semiconductor GmbH Business Marketing Europe Opto Theresienstr. 2 D-74025 Heilbronn Germany Phone: +49-7131-67-2113 Fax: +49-7131-67-3144

Attached Part Number List:

Material IL300 IL300-3124 IL300-DEFG IL300-DEFG-X001 IL300-DEFG-X006 IL300-DEFG-X007 IL300-DEFG-X007T IL300-DEFG-X009T IL300-DEFG-X016 IL300-DEFG-X017T IL300-DEF-X009T IL300-EF IL300-EF IL300-EF-X007T IL300-EF-X007T IL300-EF-X007T IL300-EF-X007T IL300-EF-X007T IL300-EF-X009T IL300-F-X009T IL300-F-X001 IL300-F-X007T IL300-F-X009T IL300-F-X009T IL300-F-X009T IL300-F-X007T IL300-X007T IL300-X009T IL300-X009T IL300-X007T IL300-X009T IL30X

Details of Changes to IL300 Series Addressed in PCN OMV-1179-2021

CONFIDENTIAL THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1 1. Contents

PCN OMV-1179-2021

Section

Page

1	1. C	ONTENTS	.2
2	INT	RODUCTION	.3
	2.1	GENERAL PCN INFORMATION	.3
3	СН	ANGES ASSOCIATED WITH THIS PCN	.2
	3.1	EMITTER CHIP CHANGE	.2
	3.2	DETECTOR CHIP CHANGE	
	3.3	PACKAGE	.2
	3.4	MARKING	.4
	3.5	PRODUCTION LINE	.4
	3.6	MISCELLANEOUS	.4
	3.7	SPECIFICATION CHANGES	.4
	3.7.	<i>l</i> Changes to Data Sheet limits	.4
	3.7.	2 Corrections to the current datasheet	5
	3.8	CHARACTERISTICS	.5

2 Introduction

This document presents additional information with respect to the changes addressed in PCN OMV-1179-2021 concerning the IL300, linear optocoupler, series products.

2.1 General PCN information

The PCN presents changes to the IL300 series (see detailed list below). This product uses Vishay's new more robust Double Mold Planar Process (DMP). The linear coupler consists of 3 dies, one IrLED and two PIN diodes. The AlGaAs IrLED is optically coupled to both the feedback PIN diode and the output PIN diode in a bifurcated arrangement. These components are encapsulated in a DIP8 plastic package. The final assembly and test occur in Vishay's facility in Krubong, Malaysia.

The changes consist of a redesigning of the product and the transfer of the product to a new production line of cutting edge technology with increased production capacity. The new component also utilizes environmentally friendly material.

The complete list of products impacted by the PCN is listed below:

Material	Material	Material
IL300	IL300-Е	IL300-F-X001
IL300-3124	IL300-EF	IL300-F-X007
IL300-DEFG	IL300-EF-X007	IL300-F-X007T
IL300-DEFG-X001	IL300-EF-X007T	IL300-F-X009
IL300-DEFG-X006	IL300-EF-X009T	IL300-F-X009T
IL300-DEFG-X007	IL300-EF-X016	IL300-F-X016
IL300-DEFG-X007T	IL300-EF-X017	IL300-F-X017T
IL300-DEFG-X009T	IL300-EF-X017T	IL300-X007
IL300-DEFG-X016	IL300-E-X006	IL300-X007T
IL300-DEFG-X017	IL300-E-X007T	IL300-X009T
IL300-DEFG-X017T	IL300-E-X009T	IL300-X016
IL300-DEF-X009T	IL300-F	IL300-X017

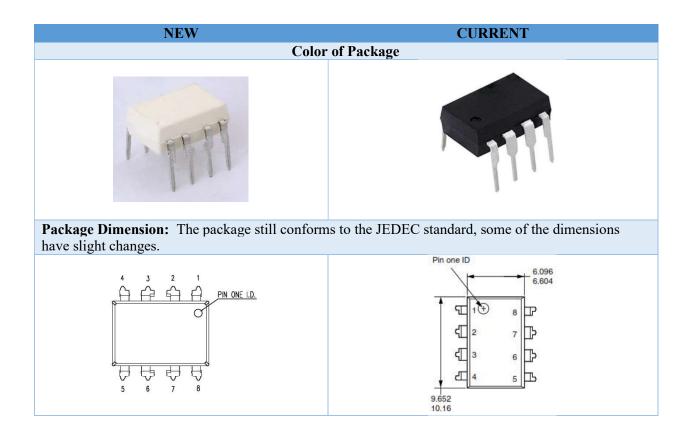
The new parts were realized by pairing up a new emitter with an improved version of the current detector (PIN diode) to meet the same performance requirements with minimum change to datasheet specifications. The new emitter uses MOVPE manufacturing technology allowing more consistent performance across all products, while the detector is a derivative of the existing product.

Both current and new version of these chips are sourced out of Vishay's fabrication lines in Heilbronn Germany. The DMP construction and process represents a new manufacturing line from our existing factory in Krubong, Malaysia.

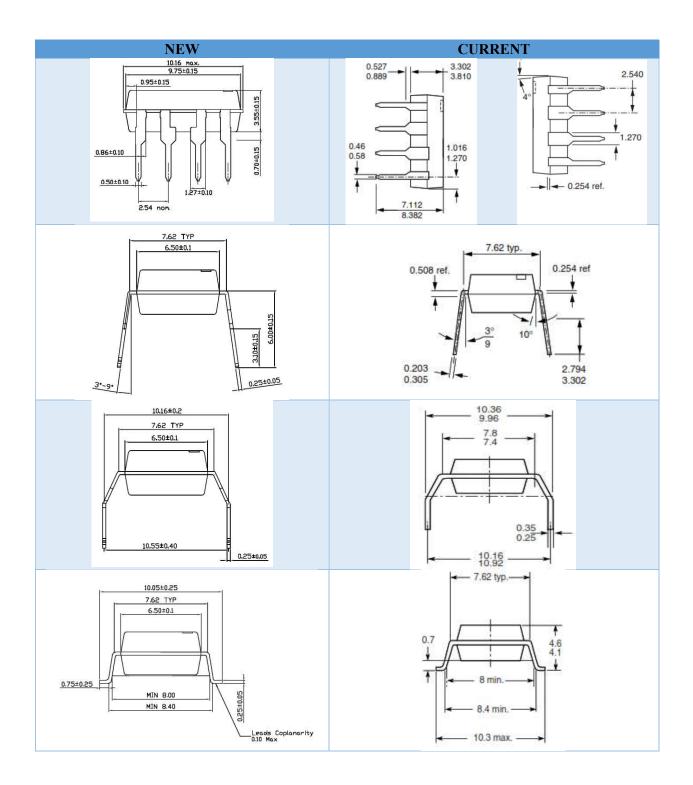
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.com/doc?91000</u>

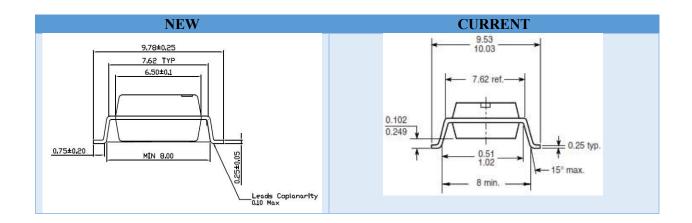
3 Changes associated with this PCN.

3.1 Emitter chip change.


The emitter was revised to the MOVPE multi-quantum well GaAlAs technology to provide a greater light output to achieve product specifications comparable with the current product.

3.2 Detector chip change


The detector is a derivative of the current chip (the difference between the two is not detectable by physical appearance)


3.3 Package

The package has been redesigned resulting in several changes. The most notable of these changes is the colour of the outer molding compound. Less noticeable is the change in construction and the change in package dimensions.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.com/doc?91000</u>

3.4 Marking

There is no change in product marking

3.5 Production Line

The product has been transferred to a state of the art production line with increased production capacity.

3.6 Miscellaneous

- 1. Existing Product names will not change.
- 2. The new parts all retain the same safety agency certification as the current version.
- 3. There are no changes in the production testing of the product.
- 4. New Links to resources have been added to the data sheet.

3.7 Specification Changes

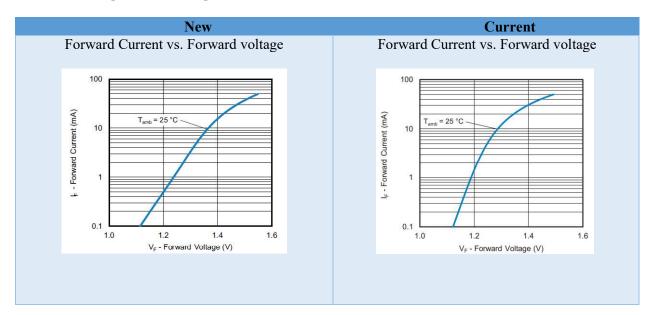
Due to the change of the die some of the characteristics will change. These changes are reflected in the typical values in the data sheet as demonstrated in the table below.

	New	Current	units
Forward Voltage (VF) @ 10mA IF	1.4	1.25	V
Short circuit Current (Isc) @ 10mA IF	90	120	μΑ
Output Current (Ip ₁ , Ip ₂) @ $10mA I_{F}, V_{det} = -15 V$	90	120	μΑ
K1, K2 Output Current Gain @ 10mA IF, Vdet = -15 V	0.009	0.012	
Rise time (a) $I_F=10mA$	0.8	1.75	μs
Fall time (a) IF=10mA	0.8	1.75	μs

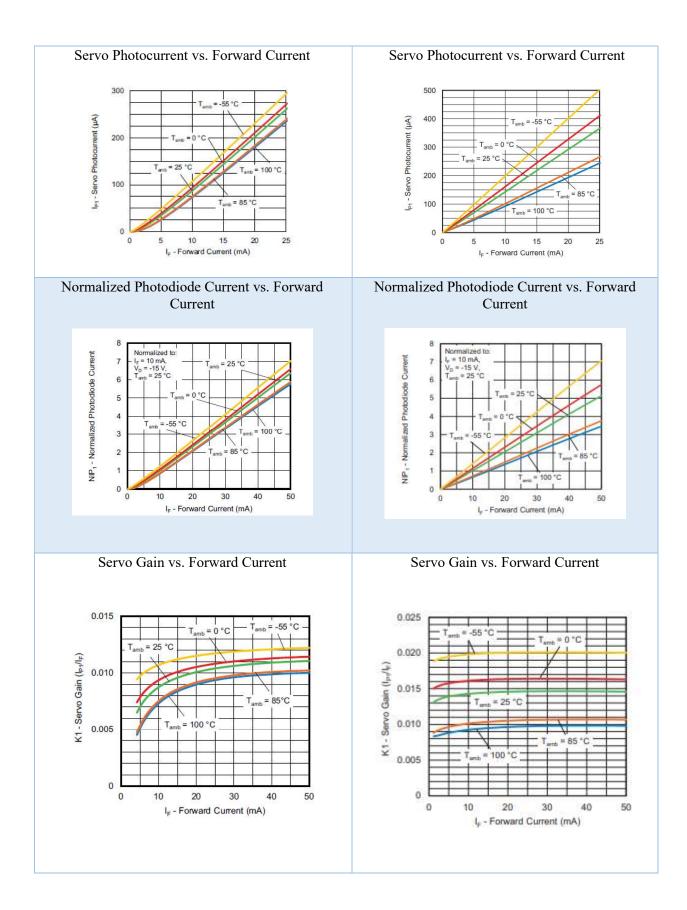
The parameter changes are small and fall within the existing data sheet specification.

3.7.1 Changes to Data Sheet limits.

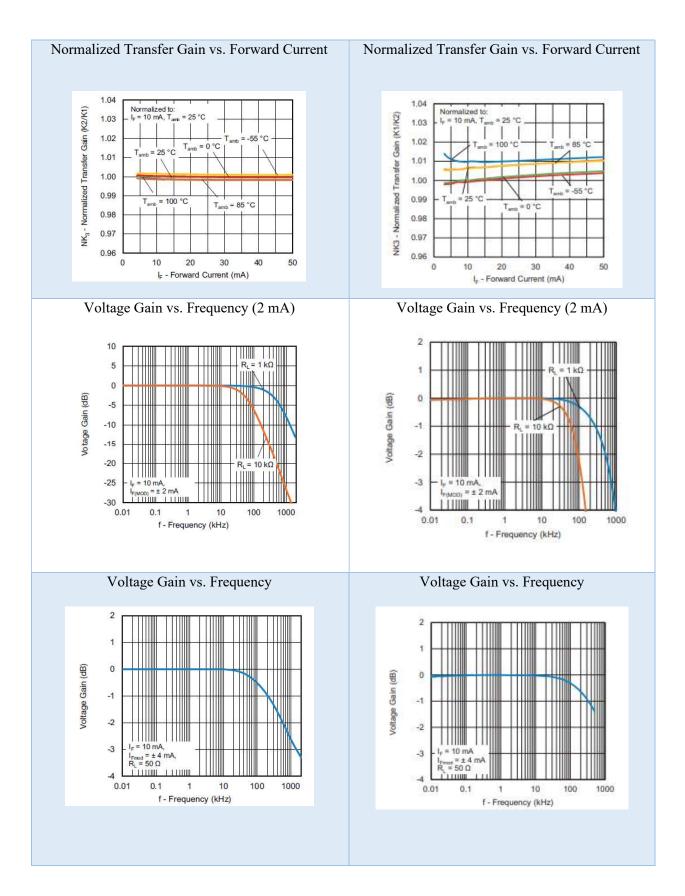
The following shows a comparison of the parametric limits that were changed in the data sheet as a result of this new design.

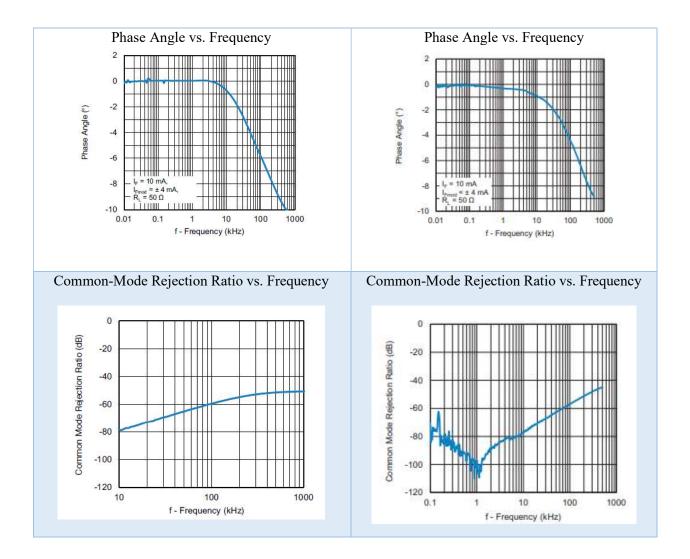

				New			Curren	t	
ABSOLUTE MAXIUM RATIN	IGS								
PARAMETER	TEST CONDITION	SYMBOL		VALUE		VALUE			UNIT
Input Power distribution	wer distribution Pdiss 100			160			mW		
Derate linearly from 25 °C				-			2.13		mW/°C
Input Thermal resistance		R _{th}		-		470			°K/W
Input Junction temperature		T _i		125		100			°C
Output Power: Derate				-		0.65			mW/°C
linearly from 25 °C		-							
Input Thermal resistance		R _{th}		-			1500		°K/W
Input Junction temperature		Ti		125		100			°C
Total Package Power distribution at 25°C		Pdiss	150		210			mW	
Derate linearly from 25 °C						2.0			mW/°C
Derate linearly from 25 °C		-			2.8			mw/ C	
ELECTRICAL CHARACTERISTICS									
PARAMETER	TEST CONDITION	SYMBOL	MIN	TYP.	MAX	MIN	TYP.	MAX	UNIT
Forward Voltage	$I_F = 10 \text{ mA}$	V _F	1,111	1.4	1011111	10111	1.25	1,1,1,1,1	V
V _F temperature coefficient	-1	$\Delta V_F / \Delta^{\circ} C$		-			-2.2		mW/°C
Input Junction capacitance	$V_{\rm F} = 0 V, f = 1 \rm MHz$	Ci		26			15		pF
	,	,							1
Input Dynamic resistance	$I_F = 10 \text{ mA}$	$\Delta V_F / \Delta I_F$		-			6		Ω
Output short circuit current	$I_F = 10 \text{ mA}$	I _{SC}		90			120		μA
Output noise equivalent	$V_{det} = 15V$	NEP		-			$4 \ge 10^{-14}$		Ω/√Hz
power									
K1, servo gain (I _{P1} /I _F)	$I_F = 10 \text{ mA}, V_{det} = -15 \text{ V}$	K1	0.005	0.009	0.015	0.006	0.012	0.017	
Servo photocurrent	$I_F = 10 \text{ mA}, V_{det} = -15 \text{ V}$	I_{P1}		90			120		μΑ
K2, servo gain (IP2/IF)	$I_F = 10 \text{ mA}, V_{det} = -15 \text{ V}$	K2	0.005	0.009	0.015	0.006	0.012	0.017	
Forward photocurrent	$I_F = 10 \text{ mA}, V_{det} = -15 \text{ V}$	I _{P2}		90			120		μA

3.7.2 Corrections to the current datasheet


The test condition for Transfer Gain Stability has been corrected with $T_{amb} = 0$ °C to 75 °C. The test condition for Transfer Gain Linearity has been corrected with $I_F = 2.0$ to 10 mA

3.8 Characteristics


Detailed product characterization has been performed on this series of products. Some slight changes in electrical parameters and performance were observed.


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

