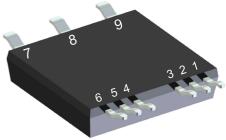


CLE90UH1200TLB

advanced

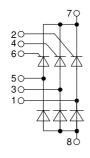
3~ Rectifier					
V_{RRM}	=	1200 V			
IDAV	=	90 A			
I _{FSM}	=	350 A			

High Efficiency Thyristor


SemiFast

3~ Rectifier Bridge, half-controlled (high-side)

Part number


CLE90UH1200TLB

Marking on Product: CLE90UH1200TLB

Backside: isolated

Features / Advantages:

- Thyristor for line and moderate frequencies
- Short turn-off time
- Planar passivated chip
- Long-term stability

Applications:

- Line rectifying 50/60 Hz
- Drives
- SMPS
- UPS

Package: SMPD

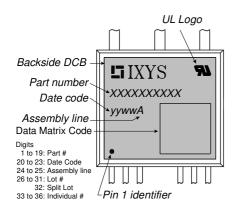
- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

CLE90UH1200TLB

advanced


Rectifier					Ratings		1 -
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	٧
V _{RRM/DRM}	max. repetitive reverse/forward bl		$T_{VJ} = 25^{\circ}C$			1200	٧
I _{R/D}	reverse current, drain current	$V_{R/D} = 1200 \text{ V}$	$T_{VJ} = 25^{\circ}C$			10	μΑ
		$V_{R/D} = 1200 \text{ V}$	$T_{VJ} = 125^{\circ}C$			2	mA
V_{T}	forward voltage drop	$I_T = 30 A$	$T_{VJ} = 25^{\circ}C$			1.30	٧
		I _T = 90 A				1.80	٧
		$I_T = 30 A$	$T_{VJ} = 125$ °C			1.28	٧
		I _T = 90 A				1.95	٧
I DAV	bridge output current	$T_C = 90^{\circ}C$	$T_{VJ} = 150$ °C			90	Α
		120° sine					
V_{T0}	threshold voltage	oss calculation only	$T_{VJ} = 150$ °C			0.92	٧
r _T	slope resistance	oss calculation only				13	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.9	K/W
R _{thCH}	thermal resistance case to heatsi	nk			0.40		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			140	W
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			350	Α
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			380	Α
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			300	А
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			320	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			615	A ² s
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			600	A ² s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			450	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			425	A ² s
C _J	junction capacitance	$V_R = 400 V$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		13		рF
P_{GM}	max. gate power dissipation	t _P = 30 μs	T _C = 150°C			10	W
	- , ,	t _P = 300 μs				5	W
P_{GAV}	average gate power dissipation					0.5	W
(di/dt) _{cr}	critical rate of rise of current	T _{v,l} = 150°C; f = 50 Hz re	epetitive, $I_{\tau} = 90 \text{ A}$			150	A/μs
701		$t_P = 200 \mu s; di_G/dt = 0.3 A/\mu s; -$	•				<u> </u>
		· · · · · · · · · · · · · · · · · · ·	on-repet., $I_T = 30 \text{ A}$			500	A/μs
(dv/dt) _{cr}	critical rate of rise of voltage	V = ² / ₃ V _{DRM}	T _{v.i} = 150°C				V/µs
(· ·	R _{GK} = ∞; method 1 (linear volta	· ·				
V _{GT}	gate trigger voltage	V _D = 6 V	$T_{VJ} = 25^{\circ}C$			1.4	٧
- 61			$T_{VJ} = -40$ °C			1.7	٧
I _{GT}	gate trigger current	$V_D = 6 \text{ V}$	$T_{VJ} = 25^{\circ}C$			30	mA
•G1	gate trigger carron.	v _D − 3 v	$T_{VJ} = -40$ °C			50	mA
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 150^{\circ}C$			0.2	V
	gate non-trigger current	V D − /3 V DRM	1// = 100 0			1	mA
I _{GD}	latching current	t 10 up	T _{vJ} = 25°C			90	
I _L	raterning current	$t_p = 10 \mu s$ $I_G = 0.3 A; di_G/dt = 0.3 A/\mu s$				90	mA
I _H	holding current	$V_D = 6 V R_{GK} = \infty$	$T_{VJ} = 25$ °C			60	mΑ
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	$T_{VJ} = 25$ °C			2	μs
•		$I_{G} = 0.3 A; di_{G}/dt = 0.3 A/\mu s$	5				
tq	turn-off time	$V_{R} = 100 \text{ V}; I_{T} = 30 \text{ A}; V = \frac{2}{3}$			50		μs
ч		$di/dt = 10 A/\mu s dv/dt = 20 V$					

CLE90UH1200TLB

advanced

Package	SMPD				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{VJ}	virtual junction temperature			-55		150	°C	
T _{op}	operation temperature			-55		125	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	N	
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	1.6			mm	
$d_{\text{Spb/Apb}}$	creepage distance on surrac	ce striking distance through an	terminal to backside	4.0			mm	
V _{ISOL}	isolation voltage	t = 1 second	50/00 II	3000			٧	
		t = 1 minute	50/60 Hz, RMS; IISOL ≤ 1 mA				٧	

Part description

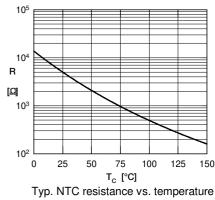
C = Thyristor(SCR)

L = High Efficiency Thyristor

E = Semifast (up to 1200V)

90 = Current Rating [A]

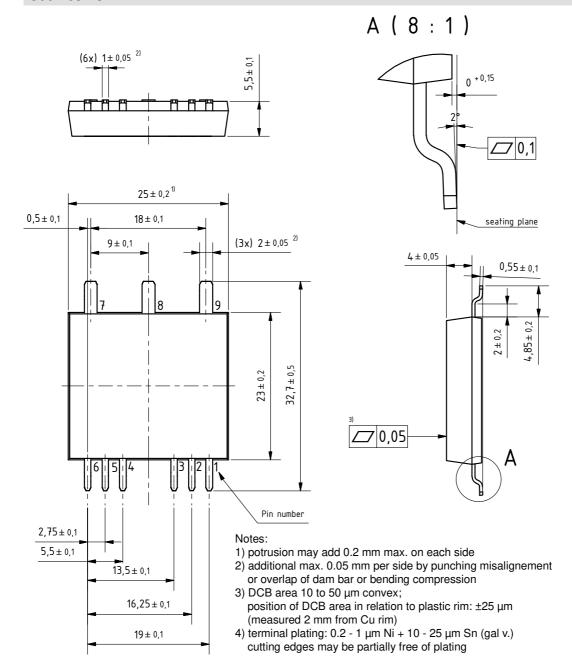
UH = 3~ Rectifier Bridge, half-controlled (high-side)

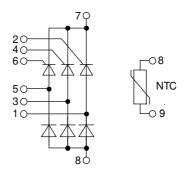

1200 = Reverse Voltage [V]

T = Thermistor \ Temperature sensor

LB = SMPD-B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	CLE90UH1200TLB-TUB	CLE90UH1200TLB	Tube	20	517456
Alternative	CLE90UH1200TLB-TRR	CLE90UH1200TLB	Tape & Reel	200	517463


ymbol	Definition		Condi	itions	min.	typ.	max.	Unit
R ₂₅	resistance		$T_{VJ} =$	25°	4.75	5	5.25	kΩ
B _{25/50}	temperature coeffic	cient				3375		K
→ (V ₀)	lent Circuits for	Thyristor	7 11	* on die l	ever		$T_{VJ} = 1$	
V _{0 max}	threshold voltage	0.92						٧
R _{0 max}	slope resistance *	10.5						mΩ



Outlines SMPD

