

CDCL3000C0-0002R7WLZ

ULTRACAPACITOR CELL

SERIES

CDCL ULTRACAPACITOR CELL

Rev	Date	Revision of historical records
V2019-1	24-10-19	The First Release
V2020-1	13-03-20	Add Product Picture
V2020-2	12-05-20	Version Update

SCOPE

These are the specifications of SPSCAP (Electric Double Layer Capacitor) which you are using, please review this document and approve it.

FEATURES

Low ESR & High Power Density

Over 1,000,000 duty cycles

Laser welding connection

APPLICATIONS

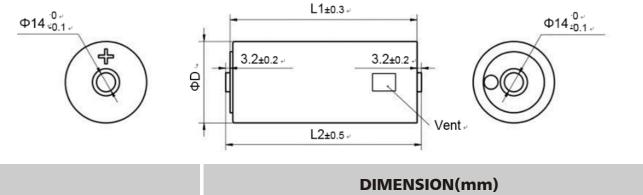
EV/HEV

Hybrid driven trains

Mass transportation braking energy recovery system

Heavy duty machinery

Locomotive engine start system



CONSTRUCTION AND DIMENSIONS

1) Construction

Inside structure: fold anode and cathode electrode with separator Outer structure: aluminum case, insulating sleeve

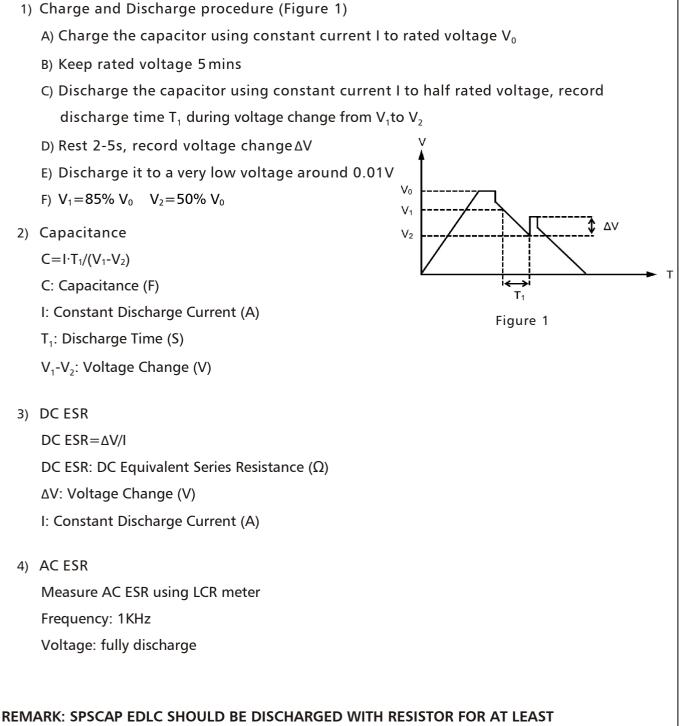
2) Dimensions

PART NUMBER	DIMENSION(IIIII)					
FART NOWBER	D(Max.)	L1	L2			
CDCL3000C0-0002R7WLZ	60.8	138.0	144.4			

PART NUMBER NAMING SYSTEM										
	CDCL		3000 C 0		-	0002	R	7		WLZ
Pro	oduct Series	Nomir	ninal Capacitance (F) Rated Voltage (V			ace (F) Rated Voltage (V) Terminal Design				
С	Cell	3000	3000			0002	2		W	W Laser
D	Electric double layer	С	Decimal		Dash	R	Deci	mal	L	welding connection
С	Cylindrical	0	0.0			7	0.1	7	Z	Standard
L	Large	Ū		0.0		/	0.	,	Z	Design

GENERAL CHARACTERISTICS

Items	Specification
Rated Voltage (V DC)	2.7
Surge Voltage (V DC)	2.85
Operating Temp. (°C)	-40 ~ +65
Rated Capacitance (F)	3000
Capacitance Tolerance	0% ~ 20%
ESR Max. (AC@1KHz, mΩ)	0.22
ESR Max. (DC, mΩ)	0.29
Maximum Continuous Current (∆T=15°C, A)	129
Maximum Continuous Current (∆T=40°C, A)	211
Maximum Peak Current (A) (1s)	2166
Max.LC (Room Temp. after 72hrs, mA)	5.2
Typical Thermal Resistance (R _{th} , Housing, °C/W)	3.1
Typical Thermal Capacitance (C _{th} , J/°C)	645
Weight (g)	505
Energy Stored (Wh)	3.04

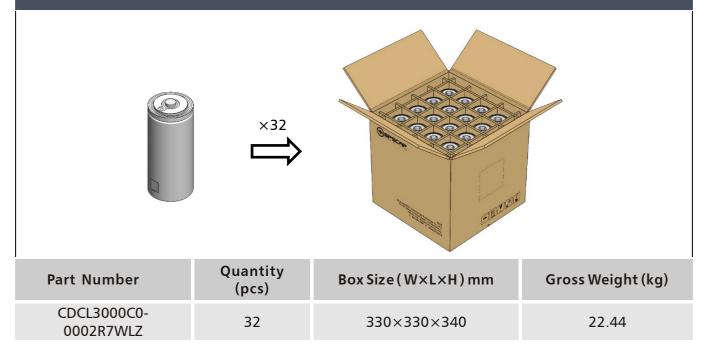


RELIABILITY SPECIFICATIONS

ITEM		SPECIFICATION		CONDITION	
Temp. Characteristics	Capacitance	Chain 1	Change within 5% of Initial Value		
	ESR	Step. 1	Change within 50% of rated value		
	Capacitance	Char 0	Change within 5% of Initial Value	Step 1:+25±2℃, 1h	
	ESR	Step . 2	Change within 50% of rated value	Step 1:+25 \pm 2 °C, 1h Step 2:+65 \pm 2°C, 1h	
	Capacitance	C 1 0	Change within 5% of Initial Value	Step 3: -25±2°C, 1h	
	ESR	Step. 3	Change within 50% of rated value	Step 4: -40±2℃, 1h	
	Capacitance	C 1	Change within 5% of Initial Value		
	ESR	Step. 4	Change within 50% of rated value		
	Capacitance	Initial Value			
Vibration Test	ESR	Initial Va	lue	ISO16750-3 Table 14	
	Appearance	Not Mark	ked Defect		
Thermal Cycle	Capacitance	Initial Value		Temp.: -40°C ~ 65°C Cycle times: 6	
	ESR	Initial Va	lue	Test Time(One Cycle): −40°C 2hrs, +65°C 2hrs, Temp change 2hrs	
	Appearance	Not Marl	ked Defect		
	Capacitance	Change within 20% of Initial Value		Temp.: +40±2℃	
Humidity Test	ESR	Change w	vithin 100% of Initial Value	Humidity: 90-95%RH Test Time: 240±8hrs	
	Appearance	Not Mark	ked Defect	lest lime: 240±8nrs	
	Capacitance	Change within 20% of Initial Value		Temp.: +65±2°C	
DC Life	ESR	Change w	vithin 100% of Initial Value	Voltage: 2.7V Time: 1,500hrs	
	Appearance	Not Mar	ked Defect		
	Capacitance	Change within 20% of Initial Value		Temp.: +70±2°C Time: 1,000hrs	
Shelf Life	ESR	Change within 100% of Initial Value			
	Appearance	Not Marked Defect			
	Capacitance	Change within 20% of Initial Value		Tomp \cdot + 2E + 2°C	
Cycle Life	ESR	Change w	vithin 100% of Initial Value	Temp.: +25±2℃ Cycles times:	
	Appearance	Not Mark	ked Defect	1,000,000	

MEASURING METHOD

12 HOURS BEFORE MEASUREMENT OF CAPACITANCE OR ESR.


NOTES AND CAUTION

Please notice below points when you start use SPSCAP.

- 1) The SPSCAP gets polarity through aging/testing process before it is packed, so please mount it in accordance with its polarity to maintain the best condition;
- Please only apply SPSCAP at rated voltage. If you apply more than rated voltage, capacitor will be damaged or broken due to electrolyte inside will be electrolyzed;
- 3) Ambient temperature greatly affects the lifetime of the capacitor, by reducing the temperature by 10°C, lifetime can be approximately doubled;
- 4) Storage: In long term storage, please store SPSCAP in following condition:
 - Temp.: 15 ~ 35°C
 - Humidity: 40 ~ 75 %RH
 - No-dust, non-acidic and/or non-alkaline atmosphere
 - Avoid direct sun light
- 5) Do not disassemble SPSCAP. It contains electrolyte;
- 6) Avoid serious mechanical impacts onto capacitor, such as force or twist capacitor;
- 7) Please contact us if you want to subject SPSCAP to severe vibrating conditions exceeding rated specification;
- 8) Please contact us if you want to connect a certain number of single capacitor to make a module;
- 9) Over-rated voltage may be applied to a single SPSCAP in series connection due to the deviation of capacitance and ESR of each SPSCAP. Please inform us if you are using SPSCAP in series connection and please design so as not to apply over-rated voltage to each capacitor, and use SPSCAP from same date code/lot.

PACKING

All rights reserved. Design and specifications are subjected to change without notice.

NINGBO CRRC NEW ENERGY TECHNOLOGY CO.,LTD.

Add: No.199 Shidai Road,Wuxiang Town,Yinzhou District, Ningbo,Zhejiang,China Email: info@spscap.com Website: www.spscap.com

Document number: DT14-08-201908-E Rev. & Date: V2020-2 2020.05.12