BSS84LT1, SBSS84LT1

Power MOSFET 130 mA, 50 V P-Channel SOT-23

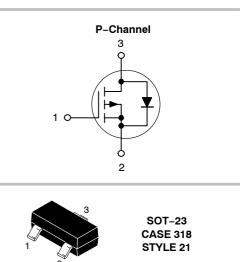
These miniature surface mount MOSFETs reduce power loss conserve energy, making this device ideal for use in small power management circuitry. Typical applications are DC–DC converters, load switching, power management in portable and battery–powered products such as computers, printers, cellular and cordless telephones.

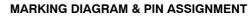
Features

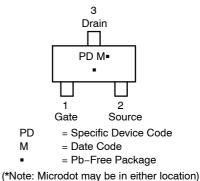
- Energy Efficient
- Miniature SOT-23 Surface Mount Package Saves Board Space
- AEC Q101 Qualified SBSS84LT1
- These Devices are Pb-Free and are RoHS Compliant

Rating	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	50	Vdc		
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc		
Drain Current – Continuous @ T _A = 25°C – Pulsed Drain Current (t _p ≤ 10 μs)	I _D I _{DM}	130 520	mA		
Total Power Dissipation @ T _A = 25°C	PD	225	mW		
Operating and Storage Temperature Range	T _J , T _{stg}	– 55 to 150	°C		
Thermal Resistance – Junction-to-Ambient	$R_{\theta JA}$	556	°C/W		
Maximum Lead Temperature for Soldering Purposes, for 10 seconds	ΤL	260	°C		

MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise noted)


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

130 mA, 50 V $R_{DS(on)}$ = 10 Ω

ORDERING INFORMATION

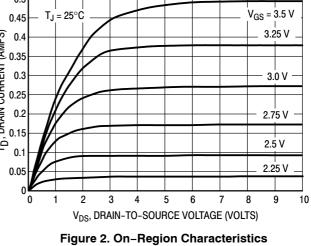
Device	Package	Shipping [†]
BSS84LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
SBSS84LT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BSS84LT1, SBSS84LT1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)


Ch	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
$\begin{array}{l} \text{Drain-to-Source Breakdown Volta} \\ (\text{V}_{GS} = 0 \text{ Vdc}, \text{ I}_{D} = 250 \ \mu\text{Adc}) \end{array}$	V _{(BR)DSS}	50	-	_	Vdc		
$\begin{array}{l} \text{Zero Gate Voltage Drain Current} \\ (\text{V}_{DS} = 25 \text{ Vdc}, \text{V}_{GS} = 0 \text{ Vdc}) \\ (\text{V}_{DS} = 50 \text{ Vdc}, \text{V}_{GS} = 0 \text{ Vdc}) \\ (\text{V}_{DS} = 50 \text{ Vdc}, \text{V}_{GS} = 0 \text{ Vdc}, \text{T}_{SS} \\ \end{array}$	I _{DSS}			0.1 15 60	μAdc		
Gate-Body Leakage Current (V _{GS}	= \pm 20 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	-	±10	nAdc	
ON CHARACTERISTICS (Note 1)						-	
Gate-Source Threaded Voltage $(V_{DS} = V_{GS}, I_D = 250 \ \mu\text{A})$	V _{GS(th)}	0.9	-	2.0	Vdc		
Static Drain-to-Source On-Resist (V _{GS} = 5.0 Vdc, I _D = 100 mAdc	R _{DS(on)}	-	5.0	10	Ω		
Transfer Admittance (V _{DS} = 25 Vdc, I _D = 100 mAdc,	y _{fs}	50	-	_	mS		
DYNAMIC CHARACTERISTICS						-	
Input Capacitance	$V_{DS} = 5.0 \text{ Vdc}$	C _{iss}	_	30	-	pF	
Output Capacitance	V _{DS} = 5.0 Vdc	C _{oss}	_	10	-		
Transfer Capacitance	V _{DG} = 5.0 Vdc	C _{rss}	-	5.0	-	-	
SWITCHING CHARACTERISTICS	(Note 2)			-	2	•	
Turn-On Delay Time		t _{d(on)}	_	2.5	-	ns	
Rise Time		t _r	_	1.0	-		
Turn-Off Delay Time	$R_L = 50 \Omega$	t _{d(off)}	_	16	-		
Fall Time	7	t _f	-	8.0	-		
Gate Charge		Q _T	_	6000	-	рС	
SOURCE-DRAIN DIODE CHARA	CTERISTICS				•		
Continuous Current	۱ _S	_	-	0.130	Α		


		.5	
Pulsed Current		I _{SM}	
Forward Voltage (Note 2)	V _{GS} = 0 V, I _S = 130 mA	V _{SD}	

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

2. Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

0.520

2.2

V

_

_

_

_

BSS84LT1, SBSS84LT1

TYPICAL ELECTRICAL CHARACTERISTICS

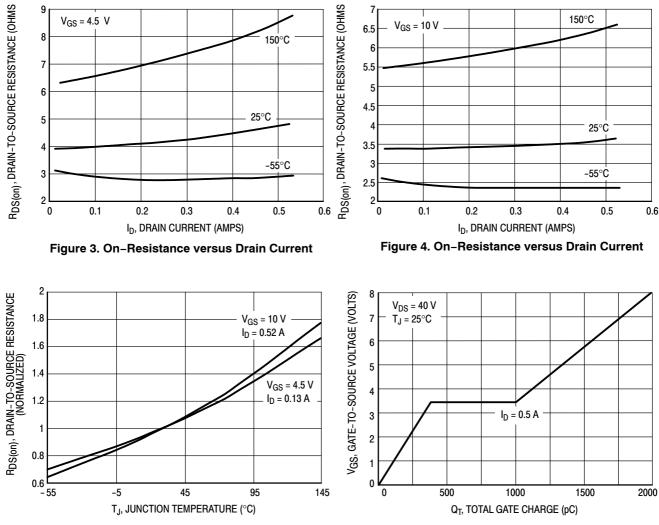


Figure 5. On-Resistance Variation with Temperature

Figure 6. Gate Charge

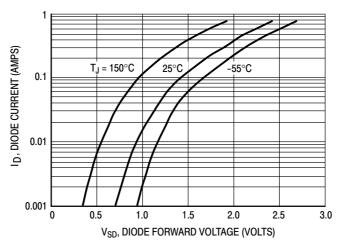
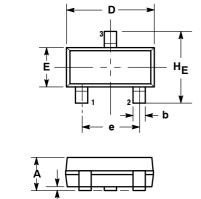
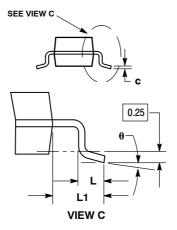


Figure 7. Body Diode Forward Voltage


PACKAGE DIMENSIONS


SOT-23 (TO-236) CASE 318-08 **ISSUE AP**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION- INCLI

З.

4.

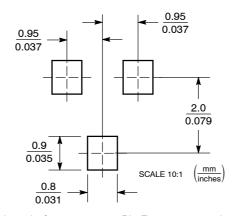
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.040	0.044
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.37	0.44	0.50	0.015	0.018	0.020
c	0.09	0.13	0.18	0.003	0.005	0.007
D	2.80	2.90	3.04	0.110	0.114	0.120
Е	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.081
L	0.10	0.20	0.30	0.004	0.008	0.012
L1	0.35	0.54	0.69	0.014	0.021	0.029
ΗE	2.10	2.40	2.64	0.083	0.094	0.104
θ	0°		10°	0°		10°
STYLE 21:						

MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM

DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,

INCHES

THICKNESS OF BASE MATERIAL


PROTRUSIONS, OR GATE BURRS

MILLIMETERS

PIN 1. GATE SOURCE 2.

3. DRAIN

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent of the poducts are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

BSS84LT1/D