

9310 One part epoxy general purpose adhesive, high Tg MG Chemicals UK Limited

Version No: A-3.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 03/04/2023 Revision Date: 03/04/2023 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name 9310 One part epoxy general purpose adhesive, high Tg	
Synonyms SDS Code: 9310-Liquid; 9310-10ML, 9310-300ML ; UFI:PVN0-V0CM-P00C-4323	
Other means of identification	931002092017 UFI:PVN0-V0CM-P00C-4323

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	general purpose adhesive
Uses advised against	No specific uses advised against are identified.

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	1210 Corporate Drive Ontario L7L 5R6 Canada
Telephone	Telephone +(44) 1663 362888 +(1) 800-340-0772	
Fax Not Available +(1) 800-340-0773		+(1) 800-340-0773
Website	Not Available	www.mgchemicals.com
Email	sales@mgchemicals.com	Info@mgchemicals.com

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)		
Emergency telephone numbers	+(44) 20 35147487	Cumpling Transfer Multipart Flaktronik Ltd	
Other emergency telephone numbers	+(0) 800 680 0425	Supplier: Transfer Multisort Elektronik Ltd.	
		Coleshill, Birmingham Coleshill House Suite 1C, 1 Station Road	
		+44 1675790026 e-mail: office@tme-uk.eu	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H411 - Hazardous to the Aquatic Environment Long-Term Hazard Category 2, H315 - Skin Corrosion/Irritation Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2, H317 - Sensitisation (Skin) Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)

Signal	word
O.g.ia.	

Warning

Hazard statement(s)

H411	Toxic to aquatic life with long lasting effects.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.

Supplementary Phrases

EUH205 Contains epoxy constituents. May produce an allergic reaction.

EUH210 Safety data sheet available on request.

Precautionary statement(s) Prevention

P280	Wear protective gloves, protective clothing, eye protection and face protection.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P337+P313	If eye irritation persists: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Ingestion may produce health damage*.

Cumulative effects may result following exposure*.

P501

May produce discomfort of the respiratory system*.

Limited evidence of a carcinogenic effect*.

Possible respiratory sensitizer*.

May be harmful to the foetus/ embryo*.

May possibly affect fertility*.

bisphenol A epoxide/ DEAPA/
N-aminoethylpiperazine

Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1.1675-54-3 2.216-823-5 3.603-073-00-2 603-074-00-8 4.Not Available	77	bisphenol A diglycidyl ether	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1; H315, H319, H317 ^[2]	Eye Irrit. 2; H319: C ≥ 5 % Skin Irrit. 2; H315: C ≥ 5 %	Not Available
1.68698-70-4 2.500-230-6 3.Not Available 4.Not Available	14	bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine [e]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H302, H315, H317, H410 [1]	Not Available	Not Available
1.9003-35-4 2.500-005-2 3.Not Available 4.Not Available	7	phenol/ formaldehyde resin	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Carcinogenicity Category 1A; H315, H319, H317, H350i [1]	Not Available	Not Available
Legend:			drawn from GB-CLP Regulation, UK SI 2019/720 and Unice identified as having endocrine disrupting properties		Classification drawn

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- ▶ Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

	Seek medical attention without delay; if pain persists or recurs seek medical attention.
	Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. For thermal burns: Decontaminate area around burn. Consider the use of cold packs and topical antibiotics. For first-degree burns (affecting top layer of skin) Hold burned skin under cool (not cold) running water or immerse in cool water until pain subsides. Use compresses if running water is not available. Cover with sterile non-adhesive bandage or clean cloth. Do NOT apply butter or ointments; this may cause infection. Give over-the counter pain relievers if pain increases or swelling, redness, fever occur. For second-degree burns (affecting top two layers of skin) Cool the burn by immerse in cold running water for 10-15 minutes. Use compresses if running water is not available. Do NOT apply butes rush is may lower body temperature and cause further damage. Do NOT break blisters or apply butter or ointments; this may cause infection. Protect burn by cover loosely with sterile, nonstick bandage and secure in place with gauze or tape. To prevent shock: (unless the person has a head, neck, or leg injury, or it would cause discomfort): Lay the person flat. Elevate feet about 12 inches. Elevate feet about 12 inches. Elevate feet about 12 inches. Elevate burn area above heart level, if possible. Cover the person with coat or blanket. Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Seek immediate medical or emergency assistance. In the mean time: Protect burn area cover loosely with sterile, nonstick bandage or, for large areas, a sheet or other material that will not leave lint in wound. Seek immediate medical or emergency assistance. To prevent shock see above. For an airway burn, do not place pillow under the person's head
Inhalation	If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.

4.2 Most important symptoms and effects, both acute and delayed

4.3. Indication of any immediate medical attention and special treatment needed

Seek medical advice.

Treat symptomatically.

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

• Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- ▶ Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Foam.
- ► Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

Fire Fighting

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course. ▶ Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

- ▶ Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke
- Mists containing combustible materials may be explosive.

Combustion products include:

carbon dioxide (CO2)

aldehydes

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for	containment and cleaning up
Minor Spills	 In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. For small spills, reactive diluents should be absorbed with sand. Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Environmental hazard - contain spillage. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite.

6.4. Reference to other sections

Wash area and prevent runoff into drains.

Collect solid residues and seal in labelled drums for disposal.

If contamination of drains or waterways occurs, advise emergency services.

SECTION 7 Handling and storage

Personal Protective Equipment advice is contained in Section 8 of the SDS.

7.1. Precautions for safe handling

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS.
Fire and explosion protection	► DO NOT allow clothing wet with material to stay in contact with skin See section 5
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

	e, including any incompatibilities Metal can or drum
Suitable container	Packaging as recommended by manufacturer.
	Check all containers are clearly labelled and free from leaks.
Storage incompatibility	In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled. Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resin. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cytocolaphatic amine < tailphatic amine < thiol. The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance. Epoxy resin may be reacted with liself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a borton trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings). Epoxides: • rare highly reactive with acids, bases, and oxi
Hazard categories in accordance with Regulation (EC) No 1272/2008	E2: Hazardous to the Aquatic Environment in Category Chronic 2
Qualifying quantity (tonnes) of dangerous substances as referred to in Article 3(10) for the application of	E2 Lower- / Upper-tier requirements: 200 / 500

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment	
			Continued

Ingredient	DNELs PNECs Exposure Pattern Worker Compartment	
bisphenol A diglycidyl ether	Dermal 0.75 mg/kg bw/day (Systemic, Chronic) Inhalation 4.93 mg/m³ (Systemic, Chronic) Dermal 89.3 µg/kg bw/day (Systemic, Chronic) * Inhalation 0.87 mg/m³ (Systemic, Chronic) * Oral 0.5 mg/kg bw/day (Systemic, Chronic) *	0.006 mg/L (Water (Fresh)) 0.001 mg/L (Water - Intermittent release) 0.018 mg/L (Water (Marine)) 0.341 mg/kg sediment dw (Sediment (Fresh Water)) 0.034 mg/kg sediment dw (Sediment (Marine)) 0.065 mg/kg soil dw (Soil) 10 mg/L (STP) 11 mg/kg food (Oral)
Dermal 28 mg/kg bw/day (Systemic, Chronic) Inhalation 98.7 mg/m³ (Systemic, Chronic) phenol/ formaldehyde resin Dermal 10 mg/kg bw/day (Systemic, Chronic) * Inhalation 14.8 mg/m³ (Systemic, Chronic) * Oral 10 mg/kg bw/day (Systemic, Chronic) *		0.172 mg/L (Water (Fresh)) 17.2 µg/L (Water - Intermittent release) 1.72 mg/L (Water (Marine)) 0.647 mg/kg sediment dw (Sediment (Fresh Water)) 64.7 µg/kg sediment dw (Sediment (Marine)) 28.4 µg/kg soil dw (Soil)

^{*} Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Not Available						

Not Applicable

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
bisphenol A diglycidyl ether	39 mg/m3	430 mg/m3	2,600 mg/m3
bisphenol A diglycidyl ether	90 mg/m3	990 mg/m3	5,900 mg/m3

Ingredient	Original IDLH	Revised IDLH
bisphenol A diglycidyl ether	Not Available	Not Available
bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine	Not Available	Not Available
phenol/ formaldehyde resin	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
bisphenol A diglycidyl ether	E	≤ 0.1 ppm	
bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine	Е	≤ 0.1 ppm	
phenol/ formaldehyde resin	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- ► cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- 26-550 As 'A' for 50-90% of persons being distracted
- C 1-26 As 'A' for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As 'D' for less than 10% of persons aware of being tested

For epichlorohydrin

Odour Threshold Value: 0.08 ppm

NOTE: Detector tubes for epichlorohydrin, measuring in excess of 5 ppm, are commercially available.

Exposure at or below the recommended TLV-TWA is thought to minimise the potential for adverse respiratory, liver, kidney effects. Epichlorohydrin has been implicated as a human skin sensitiser, hence individuals who are hypersusceptible or otherwise unusually responsive to certain chemicals may NOT be adequately protected from adverse health effects. Odour Safety Factor (OSF)

OSF=0.54 (EPICHLOROHYDRIN)

8.2. Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min) aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray 0.5-1 m/s (100-200 drift, plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s (200-500 direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) f/min.) 2.5-10 m/s grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). (500-2000 f/min.)

8.2.1. Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Individual protection measures, such as personal protective equipment

Eye and face protection

► Safety glasses with side shields

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

Hands/feet protection

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be

washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- $\boldsymbol{\cdot}$ glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374. AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times ,of:

- · Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- · Butyl Rubber ranges from excellent to good
- · Nitrile Butyl Rubber (NBR) from excellent to fair.
- · Neoprene from excellent to fair
- · Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- · Excellent breakthrough time > 480 min
- · Good breakthrough time > 20 min
- Fair breakthrough time < 20 min
- Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

• DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).

• DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times

► DO NOT use solvent to clean the skin

Body protection

See Other protection below

Other protection

- Overalls.P.V.C apron.
- Barrier cream.
- ► Skin cleansing cream.
- ► Eye wash unit.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

* - Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	amber		
Physical state	Liquid	Relative density (Water = 1)	1.15
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	>20.5
Initial boiling point and boiling range (°C)	150	Molecular weight (g/mol)	Not Available
Flash point (°C)	250	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	34989471Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhaled

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing 'amine asthma'. The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are

headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract.

Inhalation hazard is increased at higher temperatures. Not normally a hazard due to non-volatile nature of product Accidental ingestion of the material may be damaging to the health of the individual. Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, Ingestion sperm motility, and sperm abnormality in the BADGE treatment groups Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days. Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling. In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions. Individuals exhibiting 'amine dermatitis' may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis. **Skin Contact** NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided. Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal injury. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye Eve contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of Chronic the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity.. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo

following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily. In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats. BADGE is listed as an IARC Group 3 carcinogen, meaning it is 'not classifiable as to its carcinogenicity to humans'. Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans.

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal testing. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades'

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and public health officials'

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting 'amine dermatitis' may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

9310 One part epoxy general	
purpose adhesive, high Tg	

TOXICITY	IRRITATION
Not Available	Not Available

bisphenol A diglycidyl ether

TOXICITY	IRRITATION
dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2 mg/24h - SEVERE
Oral (Rat) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]

		Skin (rabbit): 500 mg - mil	d		
	Skin: adverse effect observed (irritating) ^[1]				
bisphenol A epoxide/ DEAPA/	TOXICITY		IRRITATION		
N-aminoethylpiperazine	Oral (Rat) LD50: >300<1000 mg/kg ^[1]		Not Available		
	TOXICITY	IRRITATION			
	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Eye(rabbit):40/110 mod - Draize [Manufacturer Mon]			
phenol/ formaldehyde resin	Oral (Rat) LD50: >2500 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1]			
		Skin (rabbit): 3/8 - mod - Draize			
	Skin: no adverse effect observed (not irritating) ^[1]				
Legend:	Value obtained from Europe ECHA Registered S specified data extracted from RTECS - Register of	•	ed from manufacturer's SDS. Unless otherwise		

Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that 'it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades'

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which '...merits concern among scientists and public health officials'

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, 'these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls'. Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells.[whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

BISPHENOL A DIGLYCIDYL ETHER

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called 'cytostatic hormones'. Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon.

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Ablastic anaemia develops due to complete destruction of the stem cells.

Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether.

A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. for 1.2-butylene oxide (ethyloxirane):

Ethyloxirane increased the incidence of tumours of the respiratory system in male and female rats exposed via inhalation. Significant increases in nasal papillary adenomas and combined alveolar/bronchiolar adenomas and carcinomas were observed in male rats exposed to 1200 mg/m3 ethyloxirane via inhalation for 103 weeks. There was also a significant positive trend in the incidence of combined alveolar/bronchiolar adenomas and carcinomas. Nasal papillary adenomas were also observed in 2/50 high-dose female rats with none occurring in control or low-dose animals. In mice exposed chronically via inhalation, one male mouse developed a squamous cell papilloma in the nasal cavity (300 mg/m3) but other tumours were not observed. Tumours were not observed in mice exposed chronically via dermal exposure. When trichloroethylene containing 0.8% ethyloxirane was administered orally to mice for up to 35 weeks, followed by 0.4% from weeks 40 to 69, squamous-cell carcinomas of the forestomach occurred in 3/49 males (p=0.029, age-adjusted) and 1/48 females at week 106. Trichloroethylene administered alone did not induce these tumours and they were not observed in control animals . Two structurally related substances, oxirane (ethylene oxide) and methyloxirane (propylene oxide), which are also direct-acting alkylating agents, have been classified as carcinogenic 55badger

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

BISPHENOL A EPOXIDE/ DEAPA/ N-AMINOETHYLPIPERAZINE

* REACH Dossier

PHENOL/ FORMALDEHYDE RESIN

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

9310 One part epoxy general purpose adhesive, high Tg & BISPHENOL A DIGLYCIDYL ETHER & BISPHENOL A EPOXIDE/ DEAPA/ N-AMINOETHYLPIPERAZINE & PHENOL/ FORMALDEHYDE RESIN

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg).

Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg.

Carcinogenicity: IARC concluded that 'there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals.' Its overall evaluation was 'Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3).

In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C57BL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997).

9310 One part epoxy general purpose adhesive, high Tg & BISPHENOL A DIGLYCIDYL ETHER Genotoxicity: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg).

Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs

Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs.

Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative.

9310 One part epoxy general purpose adhesive, high Tg & BISPHENOL A EPOXIDE/ DEAPA/ N-AMINOETHYLPIPERAZINE The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics.

Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE). 4.4-bisphenol F (4.4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated activity. None of the BPs induced AR-mediated activity.

The various members of the bisphenol family produce hormone like effects, seemingly as a result of binding to estrogen receptor-related receptors (ERRs; not to be confused with estrogen receptors)

A suspected estrogen-related receptors (ERR) binding agent:

Estrogen-related receptors (ERR, oestrogen-related receptors) are so named because of sequence homology with estrogen receptors but do not appear to bind estrogens or other tested steroid hormones. The ERR family have been demonstrated to control energy homeostasis, oxidative metabolism and mitochondrial biogenesis ,while effecting mammalian physiology in the heart, brown adipose tissue, white adipose tissue, placenta, macrophages, and demonstrated additional roles in diabetes and cancer.

ERRs bind enhancers throughout the genome where they exert effects on gene regulation

Although their overall functions remain uncertain, they also share DNA-binding sites, co-regulators, and target genes with the conventional estrogen receptors ERalpha and ERbeta and may function to modulate estrogen signaling pathways.

- ERR-alpha has wide tissue distribution but it is most highly expressed in tissues that preferentially use fatty acids as energy sources such as kidney, heart, brown adipose tissue, cerebellum, intestine, and skeletal muscle. ERRalpha has been detected in normal adrenal cortex tissues, in which its expression is possibly related to adrenal development, with a possible role in fetal adrenal function, in dehydroepiandrosterone (DHEAS) production in adrenarche, and also in steroid production of post-adrenarche/adult life. DHEA and other adrenal androgens such as androstenedione, although relatively weak androgens, are responsible for the androgenic effects of adrenarche, such as early pubic and axillary hair growth, adult-type body odor, increased oiliness of hair and skin, and mild acne.
- · ERR-beta is a nuclear receptor. Its function is unknown; however, a similar protein in mouse plays an essential role in placental development · ERR-gamma is a nuclear receptor that behaves as a constitutive activator of transcription. There is evidence that bisphenol A functions as an endocrine disruptor by binding strongly to ERRgamma BPA as well as its nitrated and chlorinated metabolites seems to binds strongly to

ERR-gamma (dissociation constant = 5.5 nM), but not to the estrogen receptor (ER). BPA binding to ERR-gamma preserves its basal constitutive activity. Different expression of ERR-gamma in different parts of the body may account for variations in bisphenol A effects. For instance, ERR-gamma has been found in high concentration in the placenta, explaining reports of high bisphenol A accumulation there

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	X
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

X - Data either not available or does not fill the criteria for classification

- Data available to make classification

11.2 Information on other hazards

11.2.1. Endocrine disrupting properties

Many chemicals may mimic or interfere with the body s hormones, known as the endocrine system. Endocrine disruptors are chemicals that can interfere with endocrine (or hormonal) systems. Endocrine disruptors interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, deformations of the body various cancers and sexual development problems. Endocrine disrupting chemicals cause adverse effects in animals. But limited scientific information exists on potential health problems in humans. Because people are typically exposed to multiple endocrine disruptors at the same time, assessing public health effects is difficult.

11.2.2. Other information

See Section 11.1

SECTION 12 Ecological information

9310 One part epoxy general purpose adhesive, high Tg	Endpoint	Test Duration (hr)	Spec	cies	Value		Source	
	Not Available	Not Available	Not a	Available	Not Available		Not Availa	able
	Endpoint	Test Duration (hr)	Species	i		Value	•	Source
	LC50	96h	Fish			1.2mg	g/l	2
bisphenol A diglycidyl ether	EC50	72h	Algae or	other aquatic	olants	9.4mg	g/l	2
	EC50	48h	Crustace	ea		1.1mg	g/l	2
	NOEC(ECx)	504h	Crustace	ea		0.3mg	g/l	2
	Endpoint	Test Duration (hr)	Species			Value		Source
pisphenol A epoxide/ DEAPA/	EC10(ECx)	72h	2h Algae or otl		ae or other aquatic plants 0.0		/I	2
N-aminoethylpiperazine	EC50	72h	Algae or other aquatic plants		0.13mg/l		2	
	EC50	48h	Crustacea			11.4mg/l		2
phenol/ formaldehyde resin	Endpoint	Test Duration (hr)	Spe	niae	Value		Source	
	Lilupoliti	iest Duration (III)	She	uica	value		Jource	

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Liquid epoxy resins and some reactive diluents are not readily biodegradable, although its epoxy functional groups are hydrolysed in contact with water, they have the potential to bio-accumulate and are moderately toxic to aquatic organisms. They are generally classified as dangerous for the environment according to the European Union classification criteria. Uncured solid resins on the other hand are not readily bio-available, not toxic to aquatic and terrestrial organisms, not readily biodegradable, but hydrolysable. They present no significant hazard for the environment.

For bisphenol A and related bisphenols:

Environmental fate

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, 'initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater.' However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants. Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

Reactive diluents generally have a low to moderate potential for bioconcentration (tendency to accumulate in the food chain) and a high to very high potential for mobility in soil. Small amounts that escape to the atmosphere will photodegrade.

They would not be expected to persist in the environment.

Most reactive diluents should be considered slightly to moderately toxic to aquatic organisms on an acute basis while some might also be considered harmful to the environment. Environmental toxicity is a function of the n-octanol/water partition coefficient (log Pow, log Kow). Compounds with log Pow >5 act as neutral organics, but at a lower log Pow, the toxicity of epoxide-containing polymers is greater than that predicted for simple narcotics.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

For 1,2-Butylene oxide (Ethyloxirane):

log Kow values of 0.68 and 0.86. BAF and BCF : 1 to 17 L./kg.

Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days.

Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil.

Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days).

Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L.

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A diglycidyl ether	HIGH	HIGH

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A diglycidyl ether	MEDIUM (LogKOW = 3.8446)

12.4. Mobility in soil

Ingredient	Mobility
------------	----------

Ingredient	Mobility
bisphenol A diglycidyl ether	LOW (KOC = 1767)

12.5. Results of PBT and vPvB assessment

	P	В	Т	
Relevant available data	Not Available	Not Available	Not Available	
PBT	×	×	×	
vPvB	×	×	×	
PBT Criteria fulfilled?	No			
vPvB			No	

12.6. Endocrine disrupting properties

The evidence linking adverse effects to endocrine disruptors is more compelling in the environment than it is in humans. Endocrine distruptors profoundly alter reproductive physiology of ecosystems and ultimately impact entire populations. Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over long periods of time. Some well established adverse effects of endocrine disruptors in various wildlife species include; eggshell-thinning, displayed of characteristics of the opposite sex and impaired reproductive development. Other adverse changes in wildlife species that have been suggested, but not proven include; reproductive abnormalities, immune dysfunction and skeletal deformaties.

12.7. Other adverse effects

No evidence of ozone depleting properties were found in the current literature.

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Waste Management

Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment.

Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed.

Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used.

M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010

- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Material may be disposed of by controlled burning in an approved incinerator or buried in an approved landfill.
- Prior to disposal in a landfill the material should be mixed with the other component and reacted to render the material inert.
- Extreme caution should be taken when heating the resin/curing agent mix.
- Recycle containers where possible, or dispose of in an authorised landfill.

Waste treatment options Not Available Sewage disposal options Not Available

SECTION 14 Transport information

Labels Required

NOT REGULATED by Ground ADR Special Provision 375 NOT REGULATED by Air IATA Special Provision A197 NOT REGULATED by Sea IMDG per 2.10.2.7 NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply)

Land transport (ADR-RID)

14.1. UN number or ID number	3082			
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDO	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard class(es)	Class 9 Subsidiary risk Not Applicab	ole		
14.4. Packing group	III			
14.5. Environmental hazard	Environmentally hazardous			
	Hazard identification (Kemler) Classification code	90 M6		
14.6. Special precautions for	Hazard Label	9		
user	Special provisions	274 335 375 601		
	Limited quantity	5 L		
	Tunnel Restriction Code	3 (-)		

Air transport (ICAO-IATA / DGR)

14.1. UN number	3082	3082			
14.2. UN proper shipping name	Environmentally hazardo	Environmentally hazardous substance, liquid, n.o.s. (contains bisphenol A diglycidyl ether)			
440 -	ICAO/IATA Class	9			
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable			
3.1133(33)	ERG Code	ERG Code 9L			
14.4. Packing group	III				
14.5. Environmental hazard	Environmentally hazardous				
	Special provisions		A97 A158 A197 A215		
	Cargo Only Packing Instructions		964		
	Cargo Only Maximum Qty / Pack		450 L		
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		964		
usei	Passenger and Cargo Maximum Qty / Pack		450 L		
	Passenger and Cargo Limited Quantity Packing Instructions		Y964		
	Passenger and Cargo	Limited Maximum Qty / Pack	30 kg G		
	<u> </u>		•		

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082	3082		
14.2. UN proper shipping name	ENVIRONMENTALLY	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)		
14.3. Transport hazard	IMDG Class 9	IMDG Class 9		
class(es)	IMDG Subrisk Not Applicable			
14.4. Packing group	III			
14.5. Environmental hazard	Marine Pollutant			
	EMS Number	F-A, S-F		
14.6. Special precautions for user	Special provisions	274 335 969		
	Limited Quantities	5L		
		·		

Inland waterways transport (ADN)

14.1. UN number	3082
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A diglycidyl ether)
14.3. Transport hazard class(es)	9 Not Applicable
14.4. Packing group	

14.5. Environmental hazard	Environmentally hazardous		
14.6. Special precautions for user	Classification code	M6	
	Special provisions	274; 335; 375; 601	
	Limited quantity	5 L	
	Equipment required	PP	
	Fire cones number	0	

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
bisphenol A diglycidyl ether	Not Available
bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine	Not Available
phenol/ formaldehyde resin	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
bisphenol A diglycidyl ether	Not Available
bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine	Not Available
phenol/ formaldehyde resin	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

bisphenol A diglycidyl ether is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List Great Britain GB mandatory classification and labelling list (GB MCL) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine is found on the following regulatory lists

Not Applicable

phenol/ formaldehyde resin is found on the following regulatory lists

Not Applicable

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

Information according to 2012/18/EU (Seveso III):

•	•	•		
Seveso Category	E2			

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National inventory Status	
National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	No (bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)
Canada - NDSL	No (bisphenol A diglycidyl ether; phenol/ formaldehyde resin)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	No (bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (bisphenol A diglycidyl ether; bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)
Vietnam - NCI	No (bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)
Russia - FBEPH	No (bisphenol A epoxide/ DEAPA/ N-aminoethylpiperazine)

National Inventory	Status
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	03/04/2023
Initial Date	22/07/2018

Full text Risk and Hazard codes

H302	Harmful if swallowed.
H350i	May cause cancer by inhalation.
H410	Very toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals **DSL: Domestic Substances List**

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure
Hazardous to the Aquatic Environment Long-Term Hazard Category 2, H411	Expert judgement
Skin Corrosion/Irritation Category 2, H315	Minimum classification
Serious Eye Damage/Eye Irritation Category 2, H319	Minimum classification
Sensitisation (Skin) Category 1, H317	Calculation method
, EUH205	Calculation method
. EUH210	Expert judgement